51nod1031(简单斐波拉契数列)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1031
题意:中文题诶~
思路:对于第x块骨牌的情况,我们用a[x]表示其方法数;其比x-1块骨牌时多了一块骨牌,多出的骨牌有两种放法:
1.我们可以直接将其竖着添加在最末端,那么其排列数就为就是前x-1块骨牌的排列数,即为a[x-1];
2. 我们也可以将其和其前面一块骨牌一起横着放,那么其排列数就是前x-2块骨牌的排列数,即为a[x-2];
所以有 a[x]=a[x-1]+a[x-2];
代码:
#include <bits/stdc++.h>
#define MAXN 1010
using namespace std; const int mod=1e9+; int main(void){
int a[MAXN], n;
a[]=, a[]=;
cin >> n;
for(int i=; i<=n; i++){
a[i]=(a[i-]+a[i-])%mod;
}
cout << a[n] << endl;
return ;
}
51nod1031(简单斐波拉契数列)的更多相关文章
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- 浅谈C#中的斐波拉契数列
突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处! 斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那 ...
- HDOJ2041_超级楼梯(斐波拉契数列)
正常简单题:通过仔细观察推断即可看出这是一个斐波拉契数列的题目. HDOJ2041_超级楼梯 在做这题的时候我误入了思维盲区,只想着什么方法可以解决,没有看出是斐波拉契数列.因此第一次用组合数方法打了 ...
- 实现斐波拉契数列的四种方式python代码
斐波那契数列 1. 斐波拉契数列简介 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
随机推荐
- LI 标签中让文章标题左对齐,日期右对齐的方法
希望实现标题在左对齐,日期在右对齐,当直接给日期的span加上float:right时,IE8和FF都OK,但IE6/7则会换行,下面给出一个简单有效的解决办法. <!DOCTYPE html ...
- PIC32MZ 通过USB在线升级 -- USB CDC bootloader
了解bootloader 的实现,请加QQ: 1273623966 (验证填 bootloader):欢迎咨询或定制bootloader:我的博客主页www.cnblogs.com/geekygeek ...
- 【面试题】2018年最全Java面试通关秘籍第五套!
[面试题]2018年最全Java面试通关秘籍第五套! 原创 2018-04-26 徐刘根 Java后端技术 第一套:<2018年最全Java面试通关秘籍第一套!> 第二套:<2018 ...
- 『Golang』在Golang中使用json
由于要开发一个小型的web应用,而web应用大部分都会使用json作为数据传输的格式,所以有了这篇文章. 包引用 import ( "encoding/json" "gi ...
- css的水平居中和垂直居中总结
Html代码: <div class="md-warp"> <div class="md-main">块级元素</div> ...
- 步骤2:JMeter 分布式测试(性能测试大并发、远程启动解决方案)
转载(记录) http://www.cnblogs.com/fengpingfan/p/5583954.html http://www.cnblogs.com/puresoul/p/4844539.h ...
- 修改npm全局安装模式的路径
由于npm全局模块的存放路径及cache的路径默认是放在C盘下,这样肯定会增加C盘的负担,那么如果需要修改其存放路径应该怎么做呢? 第一步:在nodejs安装目录(也可以指定其它目录)下创建”node ...
- 软件测试面试题-适合零基础和工作多年的re
软件测试面试题整理,可以看看:适合零基础和多年工作经验跳槽的人 有些问题会深挖,就不在整理了 详看图片:
- TF-IDF与主题模型 - NLP学习(3-2)
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2) 文本向量化及词袋模型 - NLP学习(3-1) 在上一篇博文 ...
- Win7下搭建Zigbee开发环境
操作系统:64位Win7 芯片类型:Texas Instruments的CC2530 软件平台:IAR v8.10 Zigbee协议栈:ZStack-CC2530-2.5.1a CP2102 USB ...