D - Common Subsequence

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d
& %I64u

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming contest
abcd mnp

Sample Output

4
2
0
一定要用记忆化,要不然会超时,还有刚开始数组开的太小了,只开到一百,结果是RE。改到600后就好了。
my answer :
一、记忆化了的。
#include<iostream>
#include<stdio.h>
#include<string>
#include<cstring>
using namespace std;
int main()
{
char a[600],b[600];
while(scanf("%s%s",a,b)!=EOF)
{
int t1=strlen(a);
int t2=strlen(b);
int dp[600][600];
memset(dp,-1,sizeof(dp));
for(int i=t1;i>=0;i--)
a[i+1]=a[i];
for(int j=t2;j>=0;j--)
b[j+1]=b[j];
for(int i=0;i<=t1;i++){
for(int j=0;j<=t2;j++){
if(i==0||j==0)dp[i][j]=0;
else if(a[i]==b[j]&&dp[i][j]<0){dp[i][j]=dp[i-1][j-1]+1;}
else if(dp[i][j]<0){dp[i][j]=max(dp[i-1][j],dp[i][j-1]);} }
}
printf("%d\n",dp[t1][t2]);
}
return 0;
}
别人写的:

进行了空间的优化:
<pre name="code" class="cpp">#include <stdio.h>
#include <string.h>
char s1[1001], s2[1001];
int dp[1001], t, old, tmp;
int main(){
scanf("%d", &t);
getchar();
while(t--){
gets(s1);
gets(s2);
memset(dp, 0, sizeof(dp));
int lenS1=strlen(s1), lenS2=strlen(s2);
for(int i=0; i<lenS1; i++){//若s1[i]==s2[j], dp[i][j] = dp[i-1][j-1]+1 否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])
old=0;//此处进行了空间优化,old 代表 dp[i-1][j-1] dp[j-1] 代表 dp[i][j-1], dp[j] 代表 dp[i-1][j]
for(int j=0; j<lenS2; j++){
tmp = dp[j];
if(s1[i]==s2[j])
dp[j] = old+1;
else
if(dp[j-1]>dp[j])dp[j]=dp[j-1];
old = tmp;
}
}
printf("%d\n", dp[lenS2-1]);
}
return 0;
}

写的太烂,下面是学姐的代码:



#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
#define max_n 1000
#define max_m 1000
int dp[max_n][max_m];
char s[max_n],t[max_m];
int main()
{
while(scanf("%s%s",s,t)!=EOF)
{
int n=strlen(s);
int m=strlen(t);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(s[i]==t[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

再写一个:

试试即记忆化,又空间优化一下:等一会吧。。。。。。让我想想。。。

D - Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. LCS POJ 1458 Common Subsequence

    题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; ( ...

  7. Common Subsequence LCS

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F 题目: Description A subsequ ...

  8. poj 1458 Common Subsequence

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 46387   Accepted: 19 ...

  9. Longest Increasing Common Subsequence (LICS)

    最长上升公共子序列(Longest Increasing Common Subsequence,LICS)也是经典DP问题,是LCS与LIS的混合. Problem 求数列 a[1..n], b[1. ...

  10. Common Subsequence(dp)

    Common Subsequence Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 951  Solved: 374 Description A subs ...

随机推荐

  1. startActivityForResult不返回结果

    startActivityForResult不返回结果,请检查AndroidManifest中的描写叙述,是否对该Activity设置了:launchMode="singleTask&quo ...

  2. DOM元素对象的属性和方法(1)

    一.accessKey() 作用:获取元素焦点快捷键:设置快捷键后,使用Alt+快捷键,让元素快速获得焦点, <!DOCTYPE html> <html> <head&g ...

  3. C#扩展方法的理解 (转)

    “扩展方法使您能够向现有类型“添加”方法,而无需创建新的派生类型.重新编译或以其他方式修改原始类型.” 这是msdn上说的,也就是你可以对String,Int,DataRow,DataTable等这些 ...

  4. 网络分析shell脚本(实时流量+连接统计)

    介绍一个强大的分析网络的shell脚本,此脚本是从EZHTTP拆分出来的,觉得有必要单独介绍下.脚本运行效果截图: 此脚本包含的功能有: 1.实时监控任意网卡的流量 2.统计10秒内平均流量 3.统计 ...

  5. 众数问题(为什么只能输入一组数据,不能输入m组数据)

    描述 所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的成为该元素的重数, 多重集合S重的重数最大的元素成为众数.例如:S={1,2,2,2,3,5},则多重集S的众数是2, ...

  6. mysql 存储过程中的declare 和 set @的两种变量的区别

    两者在手册中的说明: DECLARE var_name[,...] type [DEFAULT value]这个语句被用来声明局部变量.要给变量提供一个默认值,请包含一个DEFAULT子句.值可以被指 ...

  7. Java 7源码分析第13篇 - 字节输入输出流(1)

    上一篇介绍了关于字节输入输出流的Java类框架,同时也简单介绍了一下各个类的作用,下面就来具体看一下这些类是怎么实现这些功能的. 1.InputStream和OutputStream InputStr ...

  8. Android studio 查看sha1

    高德地图开发申请KEY的时候需要开发者提供SHA1证书指纹数据,在eclipse很容易就找到了,但是Android Studio很久也没找到,只能使用在网上看到的方法了,在Android Studio ...

  9. 编写一个程序实现strcpy函数的功能

    #include <stdio.h> #include <string.h> #define N 5 char *mycpy(char *s1, char *s2) { //数 ...

  10. MySQLdb autocommit

    MySQLdb 中 autocommit 默认是关闭的,下面是例子. import MySQLdb conn = MySQLdb.connect(host='127.0.0.1',user='root ...