Python中NumPy基础使用
Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包。
ndarray
ndarray(以下简称数组)是numpy的数组对象,需要注意的是,它是同构的,也就是说其中的所有元素必须是相同的类型。其中每个数组都有一个shape和dtype。
shape既是数组的形状,比如
import numpy as np
from numpy.random import randn arr = randn(12).reshape(3, 4) arr [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
[-0.05059849 -0.02714873 -0.62775486 0.83222997]
[-0.84826071 -0.29484606 -0.76984902 0.09025059]] arr.shape
(3, 4)
其中(3, 4)即代表arr是3行4列的数组,其中dtype为float64
一下函数可以用来创建数组
array | 将输入数据转换为ndarray,类型可制定也可默认 |
asarray | 将输入转换为ndarray |
arange | 类似内置range |
ones、ones_like | 根据形状创建一个全1的数组、后者可以复制其他数组的形状 |
zeros、zeros_like | 类似上面,全0 |
empty、empty_like | 创建新数组、只分配空间 |
eye、identity | 创建对角线为1的对角矩阵 |
数组的转置和轴对称
转置是多维数组的基本运算之一。可以使用.T属性或者transpose()来实现。.T就是进行轴对换而transpose则可以接收参数进行更丰富的变换
arr = np.arange(6).reshape((2,3))
print arr [[0 1 2]
[3 4 5]] print arr.T [[0 3]
[1 4]
[2 5]] arr = np.arange(24).reshape((2,3,4))
print arr [[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]] [[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]] print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]] [[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
数组的运算
大小相等的数组之间做任何算术运算都会将运算应用到元素级别。
arr = np.arange(9).reshape(3, 3)
print arr [[0 1 2]
[3 4 5]
[6 7 8]] print arr*arr [[ 0 1 4]
[ 9 16 25]
[36 49 64]] print arr+arr [[ 0 2 4]
[ 6 8 10]
[12 14 16]] print arr*4 [[ 0 4 8]
[12 16 20]
[24 28 32]]
numpy的简单计算中,ufunc通用函数是对数组中的数据执行元素级运算的函数。
如:
arr = np.arange(6).reshape((2,3))
print arr [[0 1 2]
[3 4 5]] print np.square(arr) [[ 0 1 4]
[ 9 16 25]]
类似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等
Python中NumPy基础使用的更多相关文章
- [转]python与numpy基础
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...
- Python中Numpy及Matplotlib使用
Python中Numpy及Matplotlib使用 1. Jupyter Notebooks 作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!! 你可以 ...
- Python中Numpy ndarray的使用
本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...
- 基于Python中numpy数组的合并实例讲解
基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...
- python中numpy矩阵运算操作大全(非常全)!
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- Python中的基础数据类型
Python中基础数据类型 1.数字 整型a=12或者a=int(2),本质上各种数据类型都可看成是类,声明一个变量时候则是在实例化一个类. 整型具备的功能: class int(object): & ...
- 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...
- python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...
随机推荐
- 《码农周刊》干货精选(Python 篇)
<码农周刊>已经累计发送了 38 期,我们将干货内容进行了精选.此为 Python 篇. <码农周刊>往期回顾:http://weekly.manong.io/issues/ ...
- mysql xtrabackup 备份恢复实现,mysql命令备份数据库,打包压缩数据库
简介 Xtrabackup是由percona提供的mysql数据库备份工具,据官方介绍,这也是世界上惟一一款开源的能够对innodb和xtradb数据库进行热备的工具.特点: (1)备份过程快速.可靠 ...
- php实现简单的上一页下一页
思路整理: 现在好多人用id的增1和减1实现上一篇和下一篇但是难道文章ID不会断了吗所以你要知道上个ID和个ID是多少就OK了那怎么解决这个问题呢,很简单例子:假如这篇文章的ID200 <a h ...
- Python 爬取CSDN博客频道
初次接触python,写的很简单,开发工具PyCharm,python 3.4很方便 python 部分模块安装时需要其他的附属模块之类的,可以先 pip install wheel 然后可以直接下载 ...
- [LeetCode]题解(python):124-Binary Tree Maximum Path Sum
题目来源: https://leetcode.com/problems/binary-tree-maximum-path-sum/ 题意分析: 给定一棵树,找出一个数值最大的路径,起点可以是任意节点或 ...
- Dancing Stars on Me(判断正多边形)
Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- find the most comfortable road(并差集,找差值最小的权值)
find the most comfortable road Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- java解析xml的几种方式
java解析xml的几种方式 DOM DOM的全称是Document ObjectModel,也即文档对象模型.在应用程序中,基于DOM的XML分析器将一个XML文档转换成一个对象模型的集合(通常称D ...
- Android_Dialog_设置Dialog窗体的大小
/** * 设置Dialog窗体的大小 */ private void setWindowSize() { DisplayMetrics dm = new DisplayMetrics(); Wind ...
- java线程池分析和应用
比较 在前面的一些文章里,我们已经讨论了手工创建和管理线程.在实际应用中我们有的时候也会经常听到线程池这个概念.在这里,我们可以先针对手工创建管理线程和通过线程池来管理做一个比较.通常,我们如果手工创 ...