Goldbach's Conjecture

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5277    Accepted Submission(s):
2022

点我

Problem Description
Goldbach's Conjecture: For any even number n greater
than or equal to 4, there exists at least one pair of prime numbers p1 and p2
such that n = p1 + p2.
This conjecture has not been proved nor refused yet.
No one is sure whether this conjecture actually holds. However, one can find
such a pair of prime numbers, if any, for a given even number. The problem here
is to write a program that reports the number of all the pairs of prime numbers
satisfying the condition in the conjecture for a given even number.

A
sequence of even numbers is given as input. Corresponding to each number, the
program should output the number of pairs mentioned above. Notice that we are
interested in the number of essentially different pairs and therefore you should
not count (p1, p2) and (p2, p1) separately as two different pairs.

 
Input
An integer is given in each input line. You may assume
that each integer is even, and is greater than or equal to 4 and less than 2^15.
The end of the input is indicated by a number 0.
 
Output
Each output line should contain an integer number. No
other characters should appear in the output.
 
Sample Input
6
10
12
0
 
Sample Output
1
2
1
 #include <iostream>
using namespace std;
int a[];
int isprime()
{
int i,k,x;
for(i=;i<;i++)
{
for(k=;k<=i/;k++)
{
if(i%k==)
break;
}
if(k==i/+)
a[i]=;
else
a[i]=;
}
return ;
}
int main()
{
int x,i,j,count=;
isprime();
while(cin>>x&&x)
{
count=;
for(i=j=x/;i>=;i--,j++)
{
if(a[i]&&a[j])
{
count++;
}
}
cout<<count<<endl;
}
}
 

Goldbach's Conjecture(哥德巴赫猜想)的更多相关文章

  1. LightOJ 1259 Goldbach`s Conjecture (哥德巴赫猜想 + 素数筛选法)

    http://lightoj.com/volume_showproblem.php?problem=1259 题目大意:给你一个数n,这个数能分成两个素数a.b,n = a + b且a<=b,问 ...

  2. Goldbach's Conjecture POJ - 2262 线性欧拉筛水题 哥德巴赫猜想

    题意 哥德巴赫猜想:任一大于2的数都可以分为两个质数之和 给一个n 分成两个质数之和 线行筛打表即可 可以拿一个数组当桶标记一下a[i]  i这个数是不是素数  在线性筛后面加个装桶循环即可 #inc ...

  3. Goldbach`s Conjecture LightOJ - 1259 (素数打表 哥德巴赫猜想)

    题意: 就是哥德巴赫猜想...任意一个偶数 都可以分解成两个(就是一对啦)质数的加和 输入一个偶数求有几对.. 解析: 首先! 素数打表..因为 质数 + 质数 = 偶数 所以 偶数 - 质数 = 质 ...

  4. HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)

    Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...

  5. 【LightOJ1259】Goldbach`s Conjecture(数论)

    [LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...

  6. LightOJ1259 Goldbach`s Conjecture —— 素数表

    题目链接:https://vjudge.net/problem/LightOJ-1259 1259 - Goldbach`s Conjecture    PDF (English) Statistic ...

  7. Light oj-1259 - Goldbach`s Conjecture

                                                                                    1259 - Goldbach`s Co ...

  8. Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】

    Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...

  9. Goldbach’s Conjecture(信息学奥赛一本通 1622)

    [题目描述] 原题来自:Ulm Local,题面详见:POJ 2262 哥德巴赫猜想:任何大于 44 的偶数都可以拆成两个奇素数之和. 比如: 8=3+5 20=3+17=7+13 42=5+37=1 ...

随机推荐

  1. git merge 分支

    把master merge到apple_campus1.git stash2.git checkout master3.git pull4.git checkout apple_campus5.git ...

  2. mvn打包发布

    一:打包 cmd进入工作目录运行命令 1: mvn clean 2: mvn install  3: mvn clean compile    4: mvn package -DiskipTest  ...

  3. wordpress教程之文章页single.php获取当前文章所属分类

    之所以要发这篇文章,是因为这个方法适用于: WP默认文章分类 手动添加的自定文章分类 插件(custom post type ui)添加的自定义文章分类(含taxonomy) 方法目的:在文章模板中, ...

  4. Document原来可以这样来获取DOM

    images集合(页面中的图象) a)通过集合引用 代码 document.images              //对应页面上的<img>标签 document.images.leng ...

  5. hdu 1208 Pascal's Travels

    http://acm.hdu.edu.cn/showproblem.php?pid=1208 #include <cstdio> #include <cstring> #inc ...

  6. BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...

  7. C++ 11学习(1):lambda表达式

    转载请注明,来自:http://blog.csdn.net/skymanwu #include <iostream> #include <vector> #include &l ...

  8. 前台利用jcrop做头像选择预览,后台通过django利用Uploadify组件上传图最终使用PIL做图像裁切

    之前一直使用python的PIL自定义裁切图片,今天有需求需要做一个前端的选择预览页面,索性就把这个功能整理一下,分享给大家. 实现思路: 1.前端页面: 用户选择本地一张图片,然后通过鼠标缩放和移动 ...

  9. css案例学习之通过relative与absolute实现带说明信息的菜单

    效果如下 代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www ...

  10. Combination Sum 解答

    Question Given a set of candidate numbers (C) and a target number (T), find all unique combinations ...