BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose)
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 3577 Solved: 1652
[Submit][Status][Discuss]
Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
1 2 3 3 3 2
2 6
1 3
3 5
1 6
Sample Output
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-;
const int MAXN = 5e4+;
int block;
int a[MAXN], pos[MAXN];
struct Query
{
int L, R, idx;
bool operator < (const Query &rhs)const
{
if (pos[L] == pos[rhs.L])
return R < rhs.R;
else
return L < rhs.L;
//return (pos[L] == pos[rhs.L] && R < rhs.R) || L < rhs.L;
} } q[MAXN];
int n, m;
ll s[MAXN], ans1[MAXN], ans2[MAXN];
ll sqr (ll x)
{
return x * x;
}
ll ans;
void update (int x, int d)
{
ans -= sqr(s[a[x]]);
s[a[x]] += d;
ans += sqr(s[a[x]]);
}
ll GCD (ll x, ll y)
{
return y == ? x : GCD(y, x % y);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
while (~ scanf ("%d%d", &n, &m))
{
memset(s, , sizeof (s));
for (int i = ; i <= n; i++)
{
scanf ("%d", a+i);
}
block = (int) sqrt(n);
for (int i = ; i <= n; i++)
{
pos[i] = (i-)/block + ;
}
for (int i = ; i < m; i++)
{
scanf ("%d%d", &q[i].L, &q[i].R);
q[i].idx = i;
}
sort (q, q+m);
int l = , r = ;
ans = ;
for (int i = ; i < m; i++)
{
while (r < q[i].R)
{
update(r+, );
r++;
}
while (r > q[i].R)
{
update(r, -);
r--;
}
while (l < q[i].L)
{
update(l, -);
l++;
}
while (l > q[i].L)
{
update(l-, );
l--;
}
ans1[q[i].idx] = ans - (q[i].R - q[i].L + );
ans2[q[i].idx] = (ll)(q[i].R - q[i].L + )*(q[i].R - q[i].L);
}
for (int i = ; i < m; i++)
{
ll tmp = GCD(ans1[i], ans2[i]);
ans1[i] /= tmp;
ans2[i] /= tmp;
printf("%lld/%lld\n", ans1[i], ans2[i]);
}
}
return ;
}
BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块的更多相关文章
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- [bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法
Brief Description 给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率. Algorithm Design 莫队算法入门题目 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...
- bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队
题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- atitit.提升研发效率的利器---重型框架与类库的差别与设计原则
atitit.提升研发效率的利器---重型框架与类库的差别与设计原则 1. 框架的意义---设计的复用 1 1.1. 重型框架就是it界的重武器. 1 2. 框架 VS. 库 可视化图形化 1 2.1 ...
- Java发送邮件的简单实现
使用Oracle官方的JavaMail进行实现,JavaMail下载地址:https://java.net/projects/javamail/pages/Home 将下载好的jar包加入到工程路径中 ...
- hdu 3037 Saving Beans(组合数学)
hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...
- Linux/UNIX套接字连接
套接字连接 套接字是一种通信机子.凭借这样的机制.客户/server系统的开发工作既能够在本地单机上进行.也能够夸网络进行. 套接字的创建和使用与管道是有差别的.由于套接字明白地将客户和server区 ...
- DHTML【1】
什么是DHTML呢?英文全称(Dynamic Hypertext Markup Language),即动态超文本标记语言,DHTML不是一个独立的新技术,而是多种技术的综合,它能使HTML变的更 ...
- ajax_get方式
test_ajax_get.html <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" " ...
- 【网络流#2】hdu 1533 - 最小费用最大流模板题
最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...
- poj 1988 Cube Stacking && codevs 1540 银河英雄传说(加权并茶几)
#include<iostream> #include<cstdio> #include<cstring> #define maxn 30010 using nam ...
- C# 窗口传值的方法
方法一: A to B 设置FormB 为 带参数的构造函数 public Form2( object msg) { InitializeComponent(); } 方法二: A to B 定义一 ...
- javascript基础之javascript的存在形式和js代码块在页面中的存放位置
1.存在形式 文件 如: <script src='js/jc.js'></script> 前页面 <script type='text/javascript'>a ...