为了搞自动机+矩阵的题目,特来学习矩阵快速幂..........非递归形式的求Sum(A+A^2+...+A^k)不是很懂,继续弄懂................不过代码简洁明了很多,亮神很给力

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <climits>//形如INT_MAX一类的
#define MAX 100005
#define INF 0x7FFFFFFF
#define REP(i,s,t) for(int i=(s);i<=(t);++i)
#define LL long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define L(x) x << 1
#define R(x) x << 1 | 1
# define eps 1e-5
//#pragma comment(linker, "/STACK:36777216") ///传说中的外挂
using namespace std;
int n,k,m;
__int64 a[33][33];
__int64 x[66][66],y[66][66]; void multi(__int64 x[66][66],__int64 y[66][66]) { // A * B
__int64 p[66][66];
memset(p,0,sizeof(p));
int N = n * 2;
for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {
for(int k=0; k<N; k++) {
p[i][j] = (p[i][j] + (x[i][k] * y[k][j]) % m) % m;
}
}
}
for(int i=0; i<N; i++) {
for(int j=0; j<N; j++) {
x[i][j] = p[i][j];
}
}
} void quickmul(int p) { //将矩阵扩大成2n * 2n
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
y[i+n][j+n] = a[i][j];
x[i][j+n] = a[i][j];
}
}
for(int i=0; i<n; i++) y[i][i] = 1;
for(int i=0; i<n; i++) y[i+n][i] = 1;
while(p) { //A ^ p
if(p & 1) {
multi(x,y);
}
multi(y,y);
p = p >> 1;
}
} int main() {
scanf("%d%d%d",&n,&k,&m);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
scanf("%d",&a[i][j]);
a[i][j] %= m;
}
}
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
quickmul(k);
for(int i=0; i<n; i++) {
printf("%d",x[i][0]);
for(int j=1; j<n; j++) printf(" %d",x[i][j]);
puts("");
}
return 0;
}

poj 3323 Matrix Power Series (矩阵乘法 非递归形式)的更多相关文章

  1. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  2. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  3. POJ3233 [C - Matrix Power Series] 矩阵乘法

    解题思路 题目里要求\(\sum_{i=1}^kA^i\),我们不妨再加上一个单位矩阵,求\(\sum_{i=0}^kA^i\).然后我们发现这个式子可以写成这样的形式:\(A(A(A...)+E)+ ...

  4. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  5. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  6. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  7. POJ3233 Matrix Power Series 矩阵乘法

    http://poj.org/problem?id=3233 挺有意思的..学习到结构体作为变量的转移, 题意 : 给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加 ...

  8. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  9. POJ 3233 Matrix Power Series(矩阵等比求和)

    题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...

随机推荐

  1. jQuery 随滚动条滚动效果 (固定版)

    //侧栏随动 var rollStart = $('.feed-mail'), //滚动到此区块的时候开始随动 rollSet = $('.search,.weibo,.group,.feed-mai ...

  2. Scala基础入门-2

    简单类和无参方法 class Counter { private var value = 0 // 必须初始化字段 def increment() { value += 1 } // 方法默认公有 d ...

  3. HTTP中的URL长度限制(资料整理)

    HTTP中的URL长度限制   首先,其实http 1.1 协议中对url的长度是不受限制的,协议原文: The HTTP protocol does not place any a priori l ...

  4. BASH 进阶(转载防丢)

    基础 学习 Bash 的基础知识.具体来说,输入 man bash 并至少全文浏览一遍; 它很简单并且不长.其他的 shell 可能很好用,但 Bash 功能强大且几乎所有情况下都是可用的 ( 只学习 ...

  5. Visual Studio Code和Docker开发asp.net core和mysql应用

    Visual Studio Code和Docker开发asp.net core和mysql应用 .net猿遇到了小鲸鱼,觉得越来越兴奋.本来.net猿只是在透过家里那田子窗看外面的世界,但是看着海峡对 ...

  6. Cortex-M3和Cortex-M4 Fault异常应用之二 ----- Fault处理函数的实现

    在项目处于调试期间,Fault处理程序可能只是一个断点指令,调试器遇到这个指令后停止程序的运行.默认情况下,由于非硬Fault被禁能,所有发生的非Fault都会上访成硬Fault,因此只要在硬Faul ...

  7. openjpa框架入门_项目框架搭建(二)

    Openjpa2.2+Mysql+Maven+Servlet+JSP 首先说明几点,让大家更清楚整体结构: 官方source code 下载:http://openjpa.apache.org/dow ...

  8. poj3030

    #include <stdio.h> #include <stdlib.h> int main() { int n,r,e,a; scanf("%d",&a ...

  9. REST和JAX-RS相关知识介绍

    REST REpresentational State Transfer:代表性状态传输.具象状态传输 REST定义了应该如何正确地使用Web标准,例如HTTP和URI.REST并非标准,而是一种开发 ...

  10. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...