题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAioAAAAUCAYAAACj3xZHAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcoSURBVHhe7ZzhbuQ4DIPbe/GiT353xJYAQUiW7DhtpusPMBJLFCVn5kfQdvf93/95OxwOh8PhcHgg/3xdD4fD4XA4HB7HeVE5HA6Hw+HwWF7yReX9/f3r7vuY6Zlpd3hERNqqHvlqdejqQKSdqZ+BZxitDl0diLQz9WBWv8J3z5lp7zhr1WulJ2q4Klb8wZPrIu1q31l+8/m+42zKd5zpLl7+JypPefjZHE/+cuDPk7L1G4jOxfUEut+NSod8tnaw4pPV7JppFXz20QyIZWv1e4PaiCzuuK5b9wpEZ/lN5+uQfRefwNPmesk/psVD1LF9vxv6V31c5/qsHvEuXj/j6bNURL5O1t+hblffilc4X+RdxdyfPb0GdP2B+wLVeV3mo1DjV9LxmAWeCv2rXrtm6ZxxZyzSdOjWUYdrRXeOUW/Pded0unXU4VqxMgfp+DvduZwrdQqfzRNYelGJDuAPZscBdzxsoD7I+36En9X3ZDQr9a7RuHt2YlFP5Lu1rlGqPLmq69bP8grni3Irsc49wN5B3nUgqq28CD0z6OMan2EFnXM0A/DzzPSvvCN0Lu+1GhvN4bVK5B2R6br1TlXneewzZnwyMl23vsus3+65vrtuN1O/+sHQWA4PoyvSzeKeXFXO8Tj3mZ5EHxL20dkQj7SM6TMCrl2FnvSLZs6ANltOpMGqckDvgWt8vwv19eVEGqwqB/QeuMb3P8nq90U1rIkW8T3QmHoA165AT33O3kOXg7rOAu7FVeWuoj6YxXtwEZ+dq8oBvQeu8f0OfHY/FxfRGXRVOaD3wDW+v4LO3CHSY45ZHxDV7TjTnXx+fn7d/WHqRQWHXXlQV+g+0N0P3j9c9Uc86qc1meZuup8PdNVSojxWlfPnSFwbaa4Q+ftSojxWlbt6PtTrymJ3kc21AmZVP93jevdZCHuxN++r/tB0FumeJ9IhpiuLrYBazumzc1U59VBcG2kyMs9Znnq+DuhbrQ5RHdZucP47fGd5/B/Tdh4U8p0vVNer40cv+kU1qun03knWi/PMrAzkqnP5MyHqz7WDyLdaGcjdeT7U+hrFgXpFnqt0vaDzeYjHdQ+wR5w5rb3KHZ4VnX6cS8He1yge4b46x6gOsHY0e+aBGl93AN8nni/KV0tBX11ZzOn6OF73VPwnKM4tLyp3Phx66zX6gFbRD75Ctbz6PKq5A/TjUtDTY4CzcK5o7+sO7upDH/fVva87uKuPeq14zn5fCHPdntShTmtw3/WYgZ64ak+9Z24E8qM1gnm9svcu6L3btwv6+trJ088X5at1lep7lOU9jj1XtP8pqpcUcMsf0yIXaa5CT792uFILKj3yEVqT9c5qIyI/Mtr7vYNcFs+gp3pnVP1J5dMhO0cWz+DMOnuGaqI+RDWRZzfu/ap7MLOvtGQUj4g8M48V1Gs0m8c7s3Rylc/V+Gx9BLWdGtXgPqPTe7af0qkl1M72w31Gt3eFz1TN6PNF2ihe1WVeETNaAD3o1GQvKR8fH193f9j2ouLMHq5C/bL7EV4DZuZb7aM13GdxpRPr+BDNZXWrfmCkBZrPtKM4GPkr7sN9Fo+Y0QLNZ9pZjeLxSMfYFQ+iucpv1aeqRxxk3s6ol+N57kd1WU7j2T3peCiVH2A8yyuuqWo0n2k7fclIW/l3+rimqtF8pu307RLN52S9WBvVKF4fzR/FIro6ovpuLV9W/OVE2fKrHwykZAMi7toOowMjvuJ5B9UcnNXPkp3N6eo6YA4uos8ymnMn2p9rJ5HvbzofuMNzJ9V8/Dx2fA7uU3lq/soMo1rEq2fwauA8vn4TP3E+fE90VUR6378SoxcUMvUTlehDQ7nHM0vqui0zPeJRDETeOh/zkceIGX01S8eno3PNqEZzfk+ifESWH9V5zyv1Fd6LVP1Jlh/Vec+qfrYH47gC12Te2T3wvcJcppn1Ah0fp8orqs3uwWjvOcV1wLVRvWoz/yrerct0oOuhaG6lPiLSd71HvboeiuZW6mdxrxnv1fmifKfvzGwK6sBKbcbSP0/WFcUzqrwzox9pmdN8pr2Kfki8J/zgPX4FeHF1oI41fA68Mpb5aY2z+2xk1NNhf1y1jlfGqHO0xhnVrQAvX6M4wAw+H/LZzE7kOUvUL3s2jEV5+kR1gPkV1Nd76D7qgVi0FNR4XYZrM+8snoG8z4B9VBdpSVZzF91+r3q+DM74E7Ogp64sRrDPnmcF6lZrM17qv9DXh/ndY1cfHGdzDeu8vuM3yoOOJ2Kg0yvyA8zxviLSao+KqO4K2tu9gc7V6RVptUdFp4dDf2cUJ8y7NqplXeQJsn6E+cxH85qr9hWRXmNd/1HfKkcyzQorcwLmOVdnpkjrPiM6Pbqwb4bP1ekdad1nRKdHBvuQlX4jj9FsXveKvNSLyuFwOBwOh7+Lx/+Hb4fD4XA4HP5ezovK4XA4HA6Hh/L29h8INbxgGk0E+wAAAABJRU5ErkJggg==" alt="" />

解决代码及点评


/************************************************************************/
/*
19. 求N个数中的最大值,最大值出现的次数,然后求出次大值(次大值一定存在) */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h> int FindMax19(int * arr,int num) // 求最大值
{
int max=0;
for(int i=1;i<num;i++) // 循环查找最大值
{
if (arr[max]<arr[i])
{
max=i;
} }
return arr[max];
}
int FindSMax19(int * arr,int num) // 查找次最大值,一样通过循环去查找
{
int max=arr[0];
int two=arr[0];
for(int i=1;i<num;i++)
{
if (max<arr[i]) // 当发现一个更大的数时,要保存最大数和第二大的数
{ two=max;
max=arr[i];
}
else if (arr[i]>two&&arr[i]<max) // 或者某一个数只是大于第二大的数,那么就只要更换第二大的就行
{
two=arr[i];
} }
if (two==max)
{
printf("没有次大值");
return -1;
}
return two;
} void main()
{
int arr[10]={0};
for (int i=0;i<10;i++ )
{
arr[i]=rand()%20;
}
for (int i=0;i<10;i++ )
{
printf("%5d",arr[i]);
}
int num=0;
int max=FindMax19(arr,10);
for (int j=0;j<10;j++)
{
if (arr[j]==max)
{
num++;
}
}
printf("最大值为%d出现次数为:%d",max,num);
printf("次大值为:%d",FindSMax19(arr,10));
system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

2)选择工程

3)创建完工程如下图:

4)增加文件,右键点击项目

5)在弹出菜单里做以下选择

6)添加文件

7)拷贝代码与运行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACp8SURBVHhe7d0JvF5lfSfw/01IZJeghCTQ6XRzGVnCIgpUVLaggEu1VqoVt49Tp50qqLhNrR0qilWU1hnaGamUutSptdOxShXQYAWbKotsddpxWkYJWQiLSExCkjvnOe85N+eenPe9712fC36/8e97znOe5zzPOe9N7o/3vcvIzXfePRoN73n7r1dbAAAwO/7zxX9UbfWMhdIURkdGRuK5J58Sz3rOqli69OCyAwAAzJStW34Ud9x2U/zJ5ZfH6OjoWDgtQ2kKpEuWHBi/8aYLYnMsLg8AAMBsWb7/4rjowvfE/fffVwbTMpT+zjveGO/+nffH5pHHVd0AAGB2Ld9vUVzwlv8Yv/uBy2Lk7LPPHj3++GfFCWf8UnUYAADmxrp/ujk+9akre6H0dy78/Xh4dFF1CAAA5sZTfmppvP41v9oLpR//xKfjuz/YWB0CAIC58ZRDDypD6YJqP0aUUkoppZSa46qNvVL6T3ffWzUBAMDceNIhTxz/9v0/r91UHQIAgLnxCyueMD6U/p977qsOAQA8Njz80MPxT//7X+L++x+qWmbfkiX7xZOe/DOxz377lPvW0FtDPz+//MDJhdJr/voz1dbk/OyTD49/+6R/FwsWjH35KgDAnLjh726KlUf8XCw9+AlVy+zbsH5T3HLr9+KEZx1d7ltDbw397BZKv7fu/upQt5GH11db3RaMjMTIgpEYHY3yV0alSr5y9bXxi6teFHvttXe5DwAwV679yg1x1pm/GPf9cHPVMvsO3H/v+JsvfiNOOf2Ect8aemvo5+eWLWl9930KlQPqyJUrB9bhRx4Zhx1+RBx+xBFxRLFdt5eKgNp1znlX914b/+VdH4qv39txbLarOfd8WUfX8VmtjfH1Pzw/Pndn1zGllFJqalW+cDaH1TXffF1D/S3wu/arY11/ymOpe/OxGlP/qfZTDXvNtbFXSv9lw4NVU7djn7QsVl93R/zxdf8UC/bYGQsWjcaCxTtiYVEXv+TUOPDAJVXPnlPO/2xce8mvxAc+dGk8a9WLYu999q2O1DbEdZdeFF+5p9otHROv+MCvxb+r9na5Lf7iHVfF0rdcEM8+qGoq7X6Ola/6aPzy7icYzsar4w8/fHMcsds8M6nPtTTnjrlYRx/te1DufzHW9Y5W93f456P/c9qlN37DadN4Djv1W2+Sjl0et5TbK+L0Rp87P/vm+NTNve3S8jPjvDedFk+sduPOP4t3X3nj7h9z4+7Z+HMCMLeu+fL1cfbZJ835K4Rf+MLX49RVJ5b7w67hhtWr46a/X1Pt9Xf0M58RJzznOdVet75rePDhYi+9m70rDPaMFn9G4pvXpTX8Q9WW5jouTjjpOXHDddfFTWt2ra1cw7OfXb5D3suVvXfIR0dT0OztHnjAPuPW0M/PLH385F4prZe+/OC9YsWyvYvaM1ak7aV7VUf66zxfquLYylddGhddXNWrIj71jjfHX+z2StkR8dwzivhwx8ZWe1HFJ/1Vb63Gv/WsWH/lB6f+Kt/S0+O3Ln57PGdpx7GhamN8/dKu9Terz7U05572OqZR4+a+Pf7i0yNxTv38lPf3z+IfBz4fwz6nfar3EdN9bMrVb73p+bo81p/x7mqty+MrH07XVx8vPt7rY6nefHocNDbuzfHuq4trXd5eb3HPikC6rL4H6ZyfvibuHTuulFJqriuFnYULFsxZpfmmsoYUSD/76f86YaV+XeOb1W8Nve0Frcf0qubC8pXNFEg/99k/Hqu0/82v9wLp+PY1vXEL6vOncxXz1vvFY9cauqqW+pfSQgbVw1u2lf2WHLAo/u996+IfN/6/+O69d8X/3vSvZXuSMnL9taQHHb7rN0R1na9Ya7GQ3mLH2g47Nz4wFnwa7UUdfNjREbd+JzaNa6/OUfwp94tAderRa+PWOzY0+sxldVxTR3Vfy3ysI+Ll550eB9f7S4+MI1fcE/dunOD5aLYNeE53r+Hu31Sqc70bvxO33nNsnHrywb39w86IM1bcGHcUATrtF0spFtP18XtwPPe8P4gPnHdGLGuv985b4pYVZ8Uph1X76ZwjNxV/Xxp9lFJKzVmVise0NWdVzTtuDYW0ikF/JqM5rvtPT3MNKSiOFIE1ra/3mNbaC5O9z2UL4pjjnxkv/ZV/Hzt37izrf3zmsrixCKDpsW5Lx1O/8nwpiJZhtK7efOU50yf2Qr2GflUbC6W9hQ6oqt+au/45ti/aHIv22h6L9nwk9igqSS/5pj71E7Hsp79fPiad56tnLvqPa1+Wgs+34/b0ytq9V8elF1wcq9Mrn6k9/ia+mtrHnaOYrzm+ahpZsD5Wf/S34rN33hafveC34h0fvTruLftU+2N1ZdxZjy3na+y3+l66en3V3nXs6mL/ffG3ayNu/tOirZrv3tUXj/UZm6vrWppzj1tHmqe4B6uvbMzVbx1Vv7Fr7TN/qnKOuj3dp2Z78x40a0OsX7silhZJrP/zke5/s62o5nNatvW7r/X48cf7rm23tQ64F533fF3cc/RRcdjY+GXFtUWs21itp1jKPVe9rzpf1z3pLXfc9VYfgOP7rI316WN4rK2u7vvQe852zXfnnxfH//y2gWOUUkp1V+9f5fSCWdqemxpND2mruYa0nT5fDKimX/nV/7BbNXWNb1bxf71+jTUkC4v2MjxWjwuLY6nKkFo8Puvkk+PYE46Pl53zxtixY0dZn/nkx8a2U3s6nvqVr65W568DZi+M9sJprV5Dv6rVn1bHXUhXFf9X9hsLo497pHjcFose13sFtXHO0kdPvrja6nfuYtG9gwPbe5tpe3mcvOrpcfOtt1b7u/qO7W+8Oq6+6ZBYefjysWM3X3FLHPHhj8UH37Iqlo7cGn/+1v8e657/2/HB1JbqNSNx5VuLAFCdozhbdb7U90ux7O1Vvw//dqy85X3x53fUx8af57xTVsU5RZ/nrYg46jVFW5qvWM+nvrQizq3n+vCr47Dy3F3X0py7uV1sxt3xt+uO6p3j7S+I+NIVsXpjOtZbR6T5yvO/NkZu+fausX3n3xCrrxmJV9btrynWckXXPRhfd346XfPzBlzDMM/poPvaes6GWNuu/QnuRcd6793Q++LXer+ssqVYR7F92Cvqc30s3vb8e+LKS4qA2+zbdb0Hr4jla78Q15bXU9QdXyn/Q2Vcn7L634elp7wzzj3623H1VzcU46+MK9e9IN72iiMHjhl/bqWUUnUV/1cEnyI8LRxc169eHR+96KIJK/XrGj+uis8P5bzNNaTPGWXw61/Jpk2bykrO/+3fHqukeaxrfLs611A81q9qlqGw7lN0r8PqSSefEk8vguc5r/zNuP/++8cq7af2Z51SBNIqUO46164aa2vdh35V692BQlenZtXSK6OL6kC6eFssXry1bB/dubN87NRxvvqc3e2HxLL0atzBq+L8S94VJx9cHTv8qDj6plvijnF9746rLv7NuOAtRV18Y6x8567+ydGvrYNYUXfcEjeveEH82qnLxsaPHP68Ikh+K25Ln9jru1H3bZ77LRfGVUW4WLchBYWO81TVG17tH7wslse34k/f8v74WvvrXNvX0py7uZ2quB/PW7Wyt33wylhZBN/0XwH1Ok47vOo3sixOPuPp1dDUt9/8Rb9XroqRr76/d22f+FY5pjiw+9xV3fHp34w/HXlDnD/u3nU9H9XcrRp7Tgfd17Jf6znr9/ykaj9fg+5FqtZ6ly4rbmR9rKoyZbbaUi099cw4eu2NcXvreRx3/lTpY/a1Rfj9RHV9X14ezzumuvZmvwnuw2GvfEMs/9KFxXOzNp53bvoPqonHKKWU2r16/06XDwN964Ybxn3NZL9K/SZUzddcQ2pLW4Mq2bp1a1nJJRdeOFZJ81jX+GbVxq2h0AuNqS0F0IXlftlWfU3pyMIF8Y2vfbW4zm/GRz70n8bmTJX2U/v1X/1acY6ifwqlxZhyXB1Sy+0USBtzprYBVas/rXd2alatDKNlIN1avkq6x+Le2/e33n5H3Hrb7WWlLyvdUiz+xz/+cXms63y9Kg+Ob7vjqrhq5Ng4vPObfFbGkcd8q/cK0ljbIfH8d/7X+NBHUr07Thk3rn3+3v74tlRFaEhBtvyT8l5qKzYOeWFcUJ53V72lDGX9zlONG9teGb9ajnt9jFz5G/G28y+Kr5WvcPaOjbuW5tzN7aKSsq3aT029/XQg7Yw/tqutz/wbvxIfOf834pMjr+9d1ztfGL2cWxwr/+yaO9Wdn/qN+NP49/GhV1bBeKy6no/e/OP6jXtOi+N972t1vB43VlVbe23j9nt9yn5j1W5rr7c4vm59bBw7viE2rotYvmz3/9hIlRRbrfbeHOPaDn/Nrmt72/JYf+OKWLbbx3MxbuB96M2XFHtDj1FKKdWq4p/O8rtdyn+vB1The9/73oRV6hrfqLHNxhpSFTuDq7Bt27ayLr7ogt2qPlbqGj+uyv8Vm7011NIrmEVq7AXKsqpXNatQ+XfXfDX+4fobxs133lt/b2w7tafjX7/22uLzby/Q9kJtVeV277y1sfvQp2pDh9I0wdq134s3/Juz4rXLXxTnHvTL8YoDzomX7/tr1Rl26X3dQfpi2N43PXWdr6x0LP2p92+/It56+do489wzym+uGdn45bjkvPc1gtxIHLbqhRE337IrSEzm/IcfHcfc/dfxyWsbIer2q+JLUQSm8tXVcrXphGN9r7296lfUHZ+8ovcq227HvhNfq8/ZnLNY/9fKPsvilLe9N8485O5Yv6E6VtT4a2nM3dpOu/WYsur93daxIb72t71XPcv9fvNvuCfWFuGmfqV3423fjrWdcxfn+9B/iC8vf298+NfagbRXnc9H+lPvt5/TQfc1VTH+plu+M3Zs47Ufjy/dfVwcWb4Cmta2NjZUHw/j1j3Rvahq3HoPPzPOjMaY8mPhhdWrrd+Jz3xy1zru+OQfx02H1B8njUrnb15vq9K4dWed2Xvlt/nxPMF96I17b7z9rIgvXfnlar0T3DullFK7VbKwCEtd36HerOSRRx6ZsJKu8c0q374vNNfQC2x1EOyupGvOdiVd45uVrjkZuxfFdlpbGSCL46mt95he1azWvWBhETivj9/73fPG5nr7uz4Yz3jWieVj3ZaO/8M3ri+vqffqaBVEq7nqcFrO11xDn6qN/ZzSdQ/1Xg7u5988YZ84YJ/iAovJd2x7JBbusbDYXlQc2RGj27fHtu3pO+8jtu/YHjt27iwXkRZ3yR9cFqe96OWxz24/p3RdXPvB98YX7652k0NeFO+44IxYWu3G+r+ND1307TjqXf8pTjm4aivHfTzi3NTW3K4Oj+mdf90ZfxSvOKJqKt0Sn3rTH8WN1V7EcfHaS18bh6XNcr61cca4/f9ZBJ+eY17XONe4Y7vOseGa34sPfOEHY9ey4c9+Pf4kfWljcuyvxyVFuNulsf5ozD1uHWm9fxPLxu5B65rHrePQOPPsFfHFm1aM3cfbO+fv3Zv63q849riIos9uc9/6J3H+5bt+VllPMcfA52OC5zTpe19749ctPy5u/HY9b+P5KYzd38K4daeGCe5Fz6D7N36uaF7/uOvouM5C7zrGH1tx9nvjrUX4L5VzNT6e+9yH8jm7p56vOt/y6rnre+8A6PKlL6yOF7/wOfHAw9UrjH1cd83VZdCayHG/eGI8+9TTqr1uB+yzOP7qr1fH88/u/SzR+bSGh7YUgW2c3guI6SWWtHXdV74Sf/933+g1FZ7xrF+M555+eqxutT+zaH920V5GyjRwV7Ycs9+ee4xbQz/L9nvc+F8zuv5Hg2/UX/3Zf0tRt9rb3aJFexSHF8Yj27aOXV6y/Kd+Jo58+gmx194z92tGN1x9Ybz/nrPjI69qBrwZUHzC//33rY3n/UEjmMyysWtZtW5m5i6C1HlXrYh3vr0VBGfRrD0f09XnXszb9QIw4774v74WL3nxyfHg5t4rjHPh8Xsvir/8q6/GmS94brk/n9bwwx8315ByXTO19YyUAbXZXue/oq0cUvVIr3SO9nqO9UhZsfrxoPvvNX4N/Ry87+LJ/fD8s895Taz6pV/tWyef/bJ47lkvidNb7SuPOzH23GuvznNOtQ4+/QVx7Ldvits7jk2nNt72rVh7yIre28xzVPW1XDuludfHtRf/SeM+fCc+9fE1seKYo7Jcw0w/H5Or4e/F/FivUkqpOav0VvLCuav6G33m4xp62+kxVTP/pTG9t95Twuz17bX1+lV905+qofj/3mO1X7eVb+un7a41dFRt7JXSjZvbL+f+BLn14/Gm/5Z+ddYz4vUfe30c3mudG9Ode/1V8cELPx/1O8mHvPDCuOC06u3inzTuBQAtX736hjj26KfE8uVz9f5hxD33bIhv3/TdOPm0E8p9a+itoZ+D9t5j/Nv3927eUR0CAHhs+NFDm+Pvv3lz/PjHW6qW2bfXXnvGM48/Kvbdr/eli9Yw+Es4n7j3wvGhdNOPB/ycUQAAmAVP2GvB+K8pLb8IQCmllFJKqbmsytgrpfdt2f27rwAAYDYduOdI7+37s846a/TyKz7TN5Suuebz1RYAAEzeueeeG9+9+6Fqb7wUSl/36nOGC6Vr1qTvDgcAgMl517veFYceeujMhdLLLrusagGAqVm9enW11d9znjP4t780pfNNpn/SNWYq50mmOm6m5J4/mewa+vWfyrU8Gq+/aaaueaprGGbcli1bYuPGjbHHHnvE4sWLy18f2pR+zujo6Oi4nzea1D+DNI3funXrUKF0/JkBYJalT4L9aj5Ln8Afa9I19aum9v5k9Rs/mfNOdw3TkXPumfJouAahFIA5lT459qu50jVvV1tTCs1d7XNl2Lnb/erraVet/R8GqdpSW3PMZHWNT/tdc/Uz3TVMR865u6S1NKtfW9N8u4YuQikAcyp9cuxXsy19Uu43b1fbY0H7mmbj+pphqK629pxda5joHPNVe92ztfZ03vr5a1bS1fZo86gMpbP1ZE9H8wOxXXNtmDlzrW2Qek3Nmk/m89racq6x37z1mnKuLZnv6+tnvq+vaaI1Nq+jXfPddD/Z97vG+XAfJpq369rTmGYQqqupeV31HF377fHt8yRdbTOhuZ56TW1dc7fXXdd8NZ/XljzqvtGp/mCZbze2a1051jrMnHWfZL7cx/ly//ppr2U+ra0t5/Pb777Ml/s339fXz3xfX1O9tmSm1tc852Q119DvPnZpr32ya+i69vb8tX7r6uo31bZa+1hzv99220T9+o2t29uPzWO1rv3JaI6dSH3u5lqSfudorq29zqTdVp9vKrrO05y7n641TUZzvG906pBu6HSe2Me6Ye/Po+Ueeq6nJtd9G/bjL5f5vr7Hin73uL7/U6kkfYLsV8McH2TYMf369Wtval7LdDXvTX3Orra5kOaqr7c5b7970G5P+8OuN/Vt16D2LmmuumZC85qa52yvobm2dg1zfJBhx/Tr1699MhYuXFiG1fQ4XY+aUDrVmzVXcq9vmPnrvzTz+T4mM/UPxk+anM/vMB9/Sa7ndr6vbyLDrj+nQR9/zfXX2137XTVT0vq6zpfa2zXThr2Wieauz9OsrvYuzWubznWmcWmO+nEYg/o2zzXVNU1Xmnuy1zKZ658J/eZL7e2aSymIpldOn/nMZ5aP0w2mvtFpltQfGHP5QTvIfFvPRObbOuv15PhLP4z5/vw21zUf1zrf19c0H9c3mTWlvnXVmm3tY4OkfmnOifrX/bqk9nZN1rDr7ac5Z32uqayj1jW2eW3N7amazPhm367nor0/6PnqMuz9T+esq59h7/9k1tdPfZ0TrX/Q/Ujt7ZqsYe9fWwqgqZ761KfGnnvuGW94wxumHUyF0lkw7Ad1DmltzQ/AqX4wzpb5tp6m9l94z+/w6nU079l8eq7n+/pqXeucT9L6mvet6x6mtdfV1K99Jgw6Z73mZg0j9avPmx6HHdelHttc53TONxX19XTNm9rq6rqXg8YmzfFd+1ORxtZrGTT3ZNTnaF9jvdbmnE11ez1+pnXNWWuura5hpH71eaey9jqQHnbYYfG0pz0tTj311DjqqKPi0ksvnVYwFUpnWP3EDvogyiGtp1m1+bbOZD6uab5rPrfN+zcf7+V8XFPTfF3ffP23JUlralata63pOurqktq7xrU1+6XHfuebSBrbrpz6zT/Z6xu2f7/5mu3TvS/N8fV21/lS27DP/1Skc9fVVrf1W9dMr6l5nemxa03DqNfWrLmQQuerX/3qeNnLXhYvfelL4+lPf3oZTo8//vi47rrrdvtmqGEJpcwrc/UXaqoG/cMFs6X9cZf2p/pJLLf6E2fz71DaznU99b1s1kRSn+b6k/b+o0nX9QyrOXbQ8zidOdpm+v7Xa67Pkfb7XUdbcy3pcdhxM6Vea7MmkvpM9/7t2LEjrrjiinjPe94TL3/5y2PVqlVx0kknxXHHHRfPfvazY+fOnVXPyXnUhNL2zR725v+kmMz9afebD9r/GNTrmuxflNk0X+7VRJrrnKs1N5+zpL3ffn6TuXxu2+tp7+de37Da656Pmuvrt9bmddSP6X6n7WHue1e/evxkpXHtGmTYNTalMc21tffr8zXbJzvHZLTnnyvNOdN2+xrrtkFr6xo3rDSuri7p3IPmnild15D2pzJ385rqGmQ6968phdJt27aV9cgjj4w91pWOT0n6OaXr731o9B9/8MPOKpLw6Bvf+Mb0Q0yVUkqpSVfxiXBcNdvb2822rprJ4/36Tra9XcP2m0xNZ61pu65mn/pYv/1Bx7r2J2pPlY5NNG4q523WsP0mW+3zTmWdE61tMscnO/9E566r3W/Lli2j3//+90fvueee0U2bNo3ef//94+qBBx4Ye2zWgw8+OPrDH/5wdMOGDeX4pCtnpko5NOVRb98DMKvqV2b6vZJTfBIc1yftd2n262fQ+Fo6Xvept5vVbK+l7UFzN8dNtMapqtfUrEHttXo97XWlflNd66Cxqb29hqRu6zrePN9Ex7vU/SfqN1MGzdO1/mSYtfUb25SO133q7WY122tpe9DczXETrXFWeaVUKaVUjio+AQ58Vac+Nqhfv+o3ZrLnSTXsmKmce7ZqorUMOp6O1dXveFd7u+p+/c7VPN4+1mzvd7xdw/abbk12PelxsmvrN2ay50k17Jh+/ebyldJHVSid7o2dzJM5qO9kzpNqpuata6I+0137dMcrpZRS6rFRP7Fv3xeBp9qaHcO8LD5IGluP73eeuk+zBrXPtrmaBwBgOkZSMr38is/EfVtSIN7dmms+H2vWrInLLrusapldKUTVX88wTKDq+tqH5jnaBh1rqvu11zDM2KTfPBPN35yvOX/XWpL2udrnn2i/ret417y1QecCAB7dtmzZErfddlvcddddsWnTpqp1l5GRkRgdHS0fmw444ID4+Z//+Tj00ENj69at5eN3736oOjregXuOxOtefc78+5rSIgB1tqcadKxZzX5pe6Jqjq3HtNsGtferdv9hxg+znnp/2L7Ntn7bXW0THVdKKaXUY7vS2/ef+9znRn/wgx+Mbt68eawefvjhstJb+hs3bhrdsGHj6Pr1G0bXrr1n9F//9a7RW265dfQv//Iv8799XwSXaqu/1KerX9erdM2+7f1au715PJ2zX82U5vx1tdvb+832JG33W1O7f/sxSdv1+GZ7amvuJ82+ta42AOAn28aNG+PAAw8st9Orotu374hHtm+Pbdseic2bt0QRTuOhHz0cDz74UGy8d1N8/wdry9/6tG79unLMsGb87fs6/AwKN+3ANKxhQ1Pdr91/ov0ktSVd83T1n0n13LU0V781to91jU3a47vOl7THJ/UcE+k6HwDw6Jfevv/EJz4Rr3rVq8r99NuaduzYWT6mSkF0exFQd+zcETuKsPrw5s2xdcvWePzj94vrb/i7+OWX/vLQb99POpQ2Q0o77DT1Cyr9+nWdd5hAlLTnSuO65u/X3lTPOdXxyTDr7rfm9hzN/a7zdq1nojFNE42fyGT6AgCPLs1Qml4lTYE0/camOpw+8OCDsf2R7WUwTa+gpt/ulEJoCqU3fPMbeUJprT4+0bF+/WYi5HTNM0g9Xz33MGOaJnsNg443jzXX0ew/7Phkov22fseb7fX2ROcCAB7d5nUonUgKKkk7rLTbB/VrttX9unQFosmct99++1itX3tb6jeR9nm6xrTXM6hP0rW+ZltzfLtf0jW+qT4+UT8A4LFhLkPpnP+c0hRomuGoud1PCkDtaqvP23VsGFMd109zre3q0jxWb7fvTVefWt23vg/tsWm/ObbreP3YrLotac4HADCTJh1K24FlWHWIqqs2TNBpztlv7vZ5m1L/YeaZSe31Nmsq2uPb+/X11feheb2pT/v60349NqmP12PrqtuafQEAZtq8+o1O/bSDUqrJSP2bAa4rpM2k9jqb+832iaR+9VrbY9v7SXO7adj2rn7t+9bervdr/dqHlXs8ANBf+lFPixcvjsc9bnHsuefjYv/99ovHP37/WLLkgDjwwCWx7777VD0nb9KhNAWXupraQWBQMGj369J1rmZNVr3mNLa99plSr6u5vnrOLoOuY9CxiaSxMzE+VX3f6kqaj/U2APDYt2DBglh1+mnx5je9Kd5/0fvi0o9eEh/7w0vjrz7/ufjOLTcWQXXPqufkzdgrpXVAaVeXifrUYajW7t88Nhn1edNjTvX8/dbSXGdXn67rT33qSse7+gzSNb59jvpYkh7Tflu/scPKPR4AGOxpT3tanHTSSXH8CSeM1WGHHx4rDjmk6jE18/Lt+0GBoisI1SY6Vp83PQ7qW0t9mtWvLUnb/dY92YBUr6+93n5V92k+NrX7NvfrtkHjk9SvfSzt1+MBgMe+9F33l3zko/FLL3lJkQOeG8cd98w45pinxy/8wpPjoIOWld+tP1Uz/iOhZlpXGOpqq7WP1aGpq3+/8ww6/7DqefuZ7vnnyqD7l8zEvQIA5qf2j4RasGBhnHbqKfGUpzylCKEHVb0ili9fHj/90z8dTzvsyLj77rXz4+eUAgDw2NAVSt/8pt+KE088MQ5YsqTqFbHvvvvGfvvtF0uWPHHKofRR8d33AADkN5tv3wulAAAM5VHx3fcAADz2rVq1Ks4+++w4vXis67hnPCN+5md/tuoxNUIpAABDSW/fn/+Wt8Ypp54axxxzbDz1qU+LJz3pKXHIIT8V+++/xNv3AADMvh07dsS2bdti69ZtRQDdGj986KF48MEfxv33PxD33Xd//OhHD1c9J08oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIAJpV8zmir9WKhUo6PF447edq92xM7UVtRUCKUAAAyUwuiOIoBu3769/LFQabu3/0ivdmwfO5b6ToVQCgBAX0uWLIkHHnggRkaK4LhgQSxcuCD22GNhLFq0R+y9916xzz77xP7771f0e3w88QkHxsFLDyp/lukBjz+gOsNwRs4666zRy6/4TNy3pTvVrrnm87FmzZq47LLLqhYAAH4SpN/QdPPNN8ddd90Vm+7bVLVOLAXSpUuXxpFHHhlbt26NQw89NL5790PV0fEO3HMkXvfqc4RSAAC6pVC6cePG2GOPPWLx4sXlK6VNIyMj5dv16bEp7adK44cNpd6+BwAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIChLVy4MBYvXlzWokWLxh7rSsenQigFAGBoKXSeeOKJsXLlyrKOOeaYWLVqVZx33nlx2WWXxYIFU4uXQikAAEPbsWNHXH/99WUgPeGEE+LFL35xvPGNb4xzzjmnfNy5c2fVc3KEUgAAhpZCaaorrrgili5dWobTJz/5yXHccceVgTQdmwqhFACAgUZGRsZVCp+p3vve95Zv5z/1qU+dViBNhFIAAAZKwbMrmI6Ojsbzn//88jHtt/tMhlAKAMBAKZSmb2Bqh84URLdv3z7tQJoIpQAADFQH0ra6rRlGu/oNQygFAGCgrldJh6nJEEoBABioXyhN6sfpEkoBABho8+bNU6rJGDnrrLNGL7/iM3HfltGqabw113w+TjnllGoPAAAm59BDD43v3v1QtTfegXuOxOtefc7EofQph+xXbQEAwNRMO5QCAMBsqUOprykFACA7oRQAgOyEUgAAshNKAQDITigFACC7se++BwCAHMZ+JFS1DwAAGUT8f+KLzu6jVPaBAAAAAElFTkSuQmCC" alt="" />




基于visual Studio2013解决C语言竞赛题之0519最大值的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  2. 基于visual Studio2013解决C语言竞赛题之0602最大值函数

     题目

  3. 基于visual Studio2013解决C语言竞赛题之1061最大值和次最大值

       题目 解决代码及点评 /* 功能: 编写子函数, 求一维整型数组M[10]的最大值及次最大值(次最大值可能不存在). 主函数中输入10个整数, 然后调用上述子函数, 若次最大值存在, ...

  4. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  5. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  6. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  7. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  8. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  9. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

随机推荐

  1. css3: css3选择器

    --------------------css3选择器-------------------------css3属性选择器  ~~属性选择器基本上ie7+都支持,可以相对放心的使用 见: www.ca ...

  2. 从51跳cortex-m0学习2——程序详解

    跳cortex-m0——思想转变>之后又一入门级文章,在此不敢请老鸟们过目.不过要是老鸟们低头瞅了一眼,发现错误,还请教育之,那更是感激不尽.与Cortex在某些操作方式上的异同,让自己对Cor ...

  3. MVC DI

    using System;using Microsoft.Practices.Unity; public class BizInstanceFactory { private static reado ...

  4. Java跨域以及实现原理

    最近研究了一下跨域,没接触之前我的印象就是配合单点登录的一种方式,后来在网上看到资料才知道不仅仅是这一种,用法很多,具体的可以去网上搜索. 一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访 ...

  5. floyed算法

    Floyed算法(实际是动态规划问题) 问题:权值矩阵matrix[i][j]表示i到j的距离,如果没有路径则为无穷 求出权值矩阵中任意两点间的最短距离 分析:对于每一对定点u,v看是否存在一个点w使 ...

  6. sdl2-2.04 读取位图并显示

    // sdl2_win32.cpp : Defines the entry point for the console application.//// 假定SDL的库文件和头文件和VC的工程文件在一 ...

  7. centos 6.4 FTP安装和配置

    链接地址:http://blog.csdn.net/wind520/article/details/38019647 1: 安装 检查是否安装 [root@localhost ~]# rpm -qa ...

  8. POJ 1256.Anagram

    2015-06-04 问题简述: 输出一串字符的全排列,顺序不同于一般的字母序,而是 A<a<B<b......<Z<z.所以应该重写一个比较函数. 原题链接:http: ...

  9. yii配置

    一.在config/web.php中添加如下代码(开启debug工具和gii工具) if (YII_ENV_DEV) { // configuration adjustments for 'dev' ...

  10. [LeetCode]题解(python):049-Group Anagrams

    题目来源: https://leetcode.com/problems/anagrams/ 题意分析: 给定一个字符串数组,将用相同字母(包括个数)组成的字符串放到一起.比如["eat&qu ...