PS:做到第四题才发现 2,3题的路径压缩等于没写

How Many Tables

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 14542    Accepted Submission(s): 7132

Problem Description
Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers.



One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.



For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
 
Input
The input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines
follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases.
 
Output
For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.
 
Sample Input
2
5 3
1 2
2 3
4 5 5 1
2 5
 
Sample Output
2
4
 
Author
Ignatius.L
 

裸的并查集没什么好说的

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
int N,M;
int Set[1001];
int ans;
void YCL()
{
ans=0;
for(int i=0;i<=N;i++)
Set[i]=i;
}
int find(int x)
{
if(x!=Set[x])
Set[x]=find(Set[x]);
return Set[x];
}
int Union(int a,int b)
{
int a1=find(a);
int b1=find(b);
if(a1!=b1)
{
Set[a1]=b1;
return 1;
}
else return 0;
}
void input()
{
cin>>N>>M;
int a,b;
YCL();
for(int i=1;i<=M;i++)
{
cin>>a>>b;
if(Union(a,b))
ans++;
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
input();
cout<<N-ans<<endl;
}
return 0;
}

小希的迷宫

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 27792    Accepted Submission(s): 8589

Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。 


 
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。 

整个文件以两个-1结尾。
 
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
 
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0 8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0 3 8 6 8 6 4
5 3 5 6 5 2 0 0 -1 -1
 
Sample Output
Yes
Yes
No
 
Author
Gardon
 
Source
 
Recommend
lxj   |   We have carefully selected several similar problems for you:  1232 1856 1325 1233 1198 
 

几点注意:

1.不止要判环,还要判断是否是一棵树,而不是多棵树

2.注意0 0 //,1 1 0 0 这样的数据

3.编号非连续的,所以开个数组存编号

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
int father[100001];
int A[200001];
int Max=-1,tot=0;
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
int Union(int a,int b)
{
int a1=find(a);
int a2=find(b);
if(a1==a2) return 0;
else father[a1]=a2;
return 1;
}
void init()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
}
void YCL()
{
for(int i=1;i<=100000;i++)
{
father[i]=i;
}
}
int main()
{
// init();
int a,b,OK=1;
while(1)
{
YCL();
OK=1;Max=-1;tot=0;
while(cin>>a>>b)
{
if(a==-1&&b==-1) return 0;
else if(a==0&&b==0) {break;}
else if(OK)
if(Union(a,b)==0) OK=0;
A[++tot]=a;
A[++tot]=b;
}
if(OK==1) {
for(int i=1;i<=tot;i++)
if(find(father[A[i]])!=find(father[A[1]])) OK=0;
if(OK==1) printf("Yes\n");
else printf("No\n");
}
else cout<<"No"<<endl;
}
return 0;
}

Is It A Tree?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 15095    Accepted Submission(s): 3342

Problem Description
A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties. 

There is exactly one node, called the root, to which no directed edges point. 



Every node except the root has exactly one edge pointing to it. 



There is a unique sequence of directed edges from the root to each node. 



For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.








In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not. 


 
Input
The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers;
the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero. 
 
Output
For each test case display the line ``Case k is a tree." or the line ``Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1). 
 
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
 
Sample Output
Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.
 
Source
 

注意 这和上面的题有点不一样 是一个有向图

所以要判断入度

否则会出现

判断成树的情况

代码如下:

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
int father[100001];
int A[200001];
int T[200001];
int Max=-1,tot=0;
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
int Union(int a,int b)
{
int a1=find(a);
int a2=find(b);
if(a1==a2) return 0;
else father[a1]=a2;
return 1;
}
void init()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
}
void YCL()
{
for(int i=1;i<=tot;i++)
{
father[A[i]]=A[i];
T[A[i]]=0;
}
}
int main()
{
// init();
int a,b,OK=1;
int kk=0;
while(1)
{
kk++;
OK=1;Max=-1;tot=0;
while(cin>>a>>b)
{
if(a<0||b<0) return 0;
else if(a==0&&b==0) {break;}
A[++tot]=a;
A[++tot]=b;
}
YCL();
for(int i=1;i<=tot/2;i++)
{
if(OK)
{
if(Union(A[2*(i-1)+1],A[2*i])==0) OK=0;
T[A[2*i]]++;
}
}
if(OK==1) {
for(int i=1;i<=tot;i++)
{
if(find(father[A[i]])!=find(father[A[1]])) OK=0;
if(T[A[i]]>1) OK=0;
}
if(OK==1) printf("Case %d is a tree.\n",kk);
else printf("Case %d is not a tree.\n",kk);
}
else printf("Case %d is not a tree.\n",kk);
}
return 0;
}

More is better

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 327680/102400 K (Java/Others)

Total Submission(s): 15588    Accepted Submission(s): 5737

Problem Description
Mr Wang wants some boys to help him with a project. Because the project is rather complex, the more boys come, the better it will be. Of course there are certain requirements.



Mr Wang selected a room big enough to hold the boys. The boy who are not been chosen has to leave the room immediately. There are 10000000 boys in the room numbered from 1 to 10000000 at the very beginning. After Mr Wang's selection any two of them who are
still in this room should be friends (direct or indirect), or there is only one boy left. Given all the direct friend-pairs, you should decide the best way.
 
Input
The first line of the input contains an integer n (0 ≤ n ≤ 100 000) - the number of direct friend-pairs. The following n lines each contains a pair of numbers A and B separated by a single space that suggests A and B are direct friends. (A ≠ B, 1 ≤ A, B ≤ 10000000)
 
Output
The output in one line contains exactly one integer equals to the maximum number of boys Mr Wang may keep. 
 
Sample Input
4
1 2
3 4
5 6
1 6
4
1 2
3 4
5 6
7 8
 
Sample Output
4
2
Hint
A and B are friends(direct or indirect), B and C are friends(direct or indirect),
then A and C are also friends(indirect). In the first sample {1,2,5,6} is the result.
In the second sample {1,2},{3,4},{5,6},{7,8} are four kinds of answers.
 
Author
lxlcrystal@TJU
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1232 1879 1863 1875 1102 
 

MAP离散化+路径压缩。。 还一直以为是MAP导致TLE 结果发现是2,3题的路径压缩写错了。。

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#include<map>
#define oo 0x13131313
using namespace std;
int N;
int father[200000];
int A[200000];
int B[200000];
int num[200000];
map<int,int> Hash;
int tot=0;
int ans=1;
void input()
{
Hash.clear();
tot=0;ans=1;
int a,b;
for(int i=1;i<=N;i++)
{
scanf("%d%d",&a,&b);
B[(2*i-1)]=A[(2*i-1)]=a;
B[(2*i)]=A[(2*i)]=b;
}
}
void CSH()
{
B[0]=-1;
sort(B+1,B+2*N+1);
for(int i=1;i<=2*N;i++)
{
if(B[i]!=B[i-1])
Hash[B[i]]=++tot;
}
for(int i=1;i<=tot;i++)
{
father[i]=i;
num[i]=1;
}
}
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
int Union(int a,int b)
{
int a1=find(a);
int b1=find(b);
if(a1==b1) return 0;
else
{
father[a1]=b1;
num[b1]+=num[a1];
if(num[b1]>ans) ans=num[b1];
}
return 1;
}
void solve()
{
for(int i=1;i<=N;i++)
{
Union(Hash[A[(2*i-1)]],Hash[A[(2*i)]]);
}
}
void init()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
}
int main()
{
// init();
while(scanf("%d",&N)!=EOF)
{
input();
CSH();
solve();
printf("%d\n",ans);
}
return 0;
}

Constructing Roads

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 14672    Accepted Submission(s): 5572

Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village
C such that there is a road between A and C, and C and B are connected. 



We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
 
Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village
i and village j.



Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
 
Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 
 
Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2
 
Sample Output
179
 
Source
 
Recommend
Eddy   |   We have carefully selected several similar problems for you:  1233 1301 1162 1232 1875 
 

给定N条建好路径的最小生成树

1.建好的路径就是权值为0即可,或直接克鲁斯卡尔

附代码:

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
using namespace std;
struct edge
{
int s,t,w;
};
int father[101];
edge A[20111];
int map[101][101];
int N;
int ans;
int tot=0;
int Q;
int k;
int cmp(const void *i,const void *j)
{
edge *ii=(edge *)i;edge *jj=(edge *)j;
return ii->w-jj->w;
}
void YCL()
{
for(int i=1;i<=101;i++)
{
father[i]=i;
}
}
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
int Union(int a,int b)
{
int a1=find(a);
int b1=find(b);
if(a1==b1) return 0;
else
{
father[b1]=a1;
}
return 1;
}
void input()
{
YCL();
int temp,a,b;
ans=0;
tot=0;
k=0;
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
scanf("%d",&map[i][j]);
if(i<j)
{
tot++;
A[tot].s=i;A[tot].t=j;A[tot].w=map[i][j];
}
}
cin>>Q;
for(int i=1;i<=Q;i++)
{
scanf("%d%d",&a,&b);
if(Union(a,b))
{
k++;
}
}
}
void solve()
{
int j=1;
qsort(A+1,tot,sizeof(A[1]),cmp);
for(int i=1;i<=N-1-k;i++)
{
while(Union(A[j].s,A[j].t)==0&&j<=tot)
j++;
ans+=A[j].w;
}
}
int main()
{
while(cin>>N)
{
input();
solve();
cout<<ans<<endl;
}
}

后面还有几道生成树水题就不上了。。

【并查集专题】【HDU】的更多相关文章

  1. Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands)

    Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands) N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并 ...

  2. Leetcode之并查集专题-684. 冗余连接(Redundant Connection)

    Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...

  3. ZR并查集专题

    ZR并查集专题 并查集,作为一个基础算法,对于初学者来说,下面的代码是维护连通性的利器 return fa[x] == x ? x : fa[x] = getf(fa[x]); 所以,但是这对并查集的 ...

  4. 【带权并查集】HDU 3047 Zjnu Stadium

    http://acm.hdu.edu.cn/showproblem.php?pid=3047 [题意] http://blog.csdn.net/hj1107402232/article/detail ...

  5. 【进阶——种类并查集】hdu 1829 A Bug's Life (基础种类并查集)TUD Programming Contest 2005, Darmstadt, Germany

    先说说种类并查集吧. 种类并查集是并查集的一种.但是,种类并查集中的数据是分若干类的.具体属于哪一类,有多少类,都要视具体情况而定.当然属于哪一类,要再开一个数组来储存.所以,种类并查集一般有两个数组 ...

  6. 并查集问题hdu 1232

    Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道 ...

  7. 【并查集】HDU 1325 Is It A Tree?

    推断是否为树 森林不是树 空树也是树 成环不是树 数据: 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 0 0 1 2 2 3 4 5 0 0 2 5 0 0 ans: no ...

  8. 克鲁斯卡尔(并查集)hdu 1233

    还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  9. 并查集专题: HDU1232畅通工程

    畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

随机推荐

  1. UNION ALL

    select field1,field2,field3,field4 from table1 where ... UNION ALL select field1,field2,field3,field ...

  2. hdu1597

    Problem Description 假设: S1 = 1 S2 = 12 S3 = 123 S4 = 1234 ......... S9 = 123456789 S10 = 1234567891 ...

  3. poj 1149

    #include <cstdio> #include <cstring> #include <queue> #define _clr(x, y) memset(x, ...

  4. [翻译] C++ STL容器参考手册(第二章 <deque>)

    返回总册 本章节原文:http://www.cplusplus.com/reference/deque/deque/ 1. std::deque template < class T, clas ...

  5. linux学习方法之一

    相信不少想学习linux的新手们正愁不知道看什么linux学习教程好,下面小编给大家收集和整理了几点比较重要的教程,供大家学习,如需想学习更多的话,可到wdlinux学堂寻找更多教程. 1.什么是RP ...

  6. SQL基础-->层次化查询(START BY ... CONNECT BY PRIOR)[转]

    --====================================================== --SQL基础-->层次化查询(START BY ... CONNECT BY ...

  7. [C++程序设计]函数的递归调用

    在调用一个函数的过程中又出现直接或间接地调用 该函数本身,称为函数的递归(recursive)调用. 包含递归调用的函数称为递归函数. 在实现递归时,在时间和空间上的开销比较大 求n! #includ ...

  8. LFS,编译自己的Linux系统 - 准备

    概述 现在用的操作系统是Win8.1,用VMware创建一个虚拟机,3G内存(物理内存是6G,分一半),23G硬盘,其中3G用于swap分区,10G用于host system,10G用于建立LFS系统 ...

  9. python连接postgresql数据库

    python可以通过第三方模块连接postgresql. 比较有名的有psycopg2  和python3-postgresql (一)psycopg2 ubuntu下安装 sudo apt-get ...

  10. 将vim作为QT开发的IDE

    转载请注明链接与作者huihui1988 用了一段时间的vim,喜欢上了这种简洁高效的编辑器.恰逢正在学习QT中,于是将vim变成了开发QT的工具.以下是具体配置. 一.语法高亮支持: 1.打开VIM ...