Description

Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n <  ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there? 

Input

The input has several lines, and each line contains the input data n.
- denotes the end of the input file.

Output

The output should contain the output data: Number of different forms, in each line correspondent to the input data.

Sample Input


-

Sample Output


Source

 

1、题目类型:Polya定理、组合数学、置换群。

2、解题思路:Polya定理:(1)设G是p个对象的一个置换群,用k种颜色突然这p个对象,若一种染色方案在群G的作用下变为另一种方案,则这两个方案当作是同一种方案,这样的不同染色方案数为:

(2)置换及循环节数的计算方法:对于有n个位置的手镯,有n种旋转置换和n种翻转置换.
                                          对于旋转置换: c(fi) = gcd(n,i)  i为一次转过i颗宝石( i = 0 时 c=n;);
                                          对于翻转置换:如果n为偶数:c(f) = n/2 的置换有n/2个; 
                                                                            c(f) = n/2+1 的置换有n/2个;
                                                           如果n为奇数:c(f) = n/2+1.

3、注意事项:注意对于翻转置换过程中对于奇偶数情况的区分处理。

相同的gcd合并在一起计算:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<set>
#include<vector>
using namespace std;
#define ll long long
ll pow_mod(ll a,ll i){
if(i==)
return ;
ll t=pow_mod(a,i/);
ll ans=t*t;
if(i&)
ans=ans*a;
return ans;
} vector<ll> divisor(ll n){
vector<ll> res;
for(ll i=;i*i<=n;i++){
if(n%i==){
res.push_back(i);
if(i*i!=n){
res.push_back(n/i);
}
}
}
return res;
}
ll eular(ll n){
ll res=;
for(ll i=;i*i<=n;i++){
if(n%i==){
n/=i,res*=i-;
while(n%i==){
n/=i;
res*=i;
}
}
}
if(n>) res*=n-;
return res;
}
ll polya(ll m,ll n){
//map<ll,ll> primes = prime_factor(n);
vector<ll> divs = divisor(n);
ll res=;
for(ll i=;i<divs.size();i++){
ll euler=eular(divs[i]);
res+=euler*pow_mod(m,n/divs[i]);
}
res/=n;
return res;
}
int main()
{
ll n,m=;
while(~scanf("%I64d",&n) && n!=-){
if(n==){
puts("");
continue;
}
ll count=polya(m,n)*n;//旋转情况
if(n&){//奇数
count+=n*pow_mod(m,n/+);//翻转情况
}
else{//偶数
count += (pow_mod(m, n / + ) + pow_mod(m, n / )) * (n / );//翻转情况
}
count/=*n;
printf("%I64d\n",count);
}
return ;
}

附上大神代码:

相同的gcd合并在一起计算:

 #include <iostream>
#include <map>
#include <vector>
using namespace std; #define LL long long inline LL power(LL p, LL n)
{
LL sum = ;
while (n)
{
if (n & )
sum *= p;
p *= p;
n /= ;
}
return sum;
} //************************************
// Method: divisor
// FullName: divisor
// Access: public
// Returns: vector<int> 约数
// Qualifier: 约数枚举
// Parameter: const int & n 目标数n
//************************************
vector<int> divisor(const int& n)
{
vector<int> res;
for (int i = ; i * i <= n; ++i)
{
if (n % i == )
{
res.push_back(i);
if (i != n / i)
{
res.push_back(n / i);
}
}
} return res;
} //************************************
// Method: prime_factor
// FullName: prime_factor
// Access: public
// Returns: map<int, int>
// Qualifier: 整数分解
// Parameter: int n
//************************************
map<int, int> prime_factor(int n)
{
map<int, int> res;
for (int i = ; i * i <= n; ++i)
{
while (n % i == )
{
++res[i];
n /= i;
}
}
if (n != )
{
res[n] = ;
}
return res;
} LL polya(const int& m, const int& n)
{
map<int, int> primes = prime_factor(n);
vector<int> divs = divisor(n);
LL res = ;
for (int i = ; i < divs.size(); ++i)
{
// 求divs[i]的欧拉函数值
LL euler = divs[i];
for (map<int, int>::iterator it = primes.begin(); it != primes.end(); ++it)
{
int p = it->first;
if (divs[i] % p == ) euler = euler / p * (p - );
} res += euler * power(m, n / divs[i]);
} // 最后除以n
res /= n;
return res;
} ///////////////////////////SubMain//////////////////////////////////
int main(int argc, char *argv[])
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int n; const LL m = ;
while (~scanf("%d", &n) && n != -)
{
if (n == )
{
puts("");
continue;
} LL count = polya(m, n) * n;
if (n & )
count += n * power(m, n / + );
else
count += (power(m, n / + ) + power(m, n / )) * (n / );
count /= * n;
printf("%lld\n", count);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("out.txt");
#endif
return ;
}

还有一种暴力求法:

 #include <iostream>
using namespace std; #define LL long long int gcd(int a, int b)
{
return b == ? a : gcd(b, a % b);
} LL power(LL p, LL n)
{
LL sum = ;
while (n)
{
if (n & )
sum *= p;
p *= p;
n /= ; }
return sum;
} ///////////////////////////SubMain//////////////////////////////////
int main(int argc, char *argv[])
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int n; const LL m = ;
while (~scanf("%d", &n) && n != -)
{
if (n == )
{
puts("");
continue;
}
LL count = ;
for (int i = ; i <= n; ++i)
count += power(m, gcd(i, n));
if (n & )
count += n * power(m, n / + );
else
count += n / * (power(m, n / + ) + power(m, n / ));
count /= n * ;
printf("%lld\n", count);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("out.txt");
#endif
return ;
}

poj 1286 Necklace of Beads (polya(旋转+翻转)+模板)的更多相关文章

  1. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  2. POJ 1286 Necklace of Beads(Polya简单应用)

    Necklace of Beads 大意:3种颜色的珠子,n个串在一起,旋转变换跟反转变换假设同样就算是同一种,问会有多少种不同的组合. 思路:正规学Polya的第一道题,在楠神的带领下,理解的还算挺 ...

  3. POJ 1286 Necklace of Beads(项链的珠子)

    Necklace of Beads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7874   Accepted: 3290 ...

  4. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  5. 数学计数原理(Pólya):POJ 1286 Necklace of Beads

    Necklace of Beads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7763   Accepted: 3247 ...

  6. poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)

    题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...

  7. POJ 1286 Necklace of Beads(Polya原理)

    Description Beads of red, blue or green colors are connected together into a circular necklace of n ...

  8. POJ 1286 Necklace of Beads(Polya定理)

    点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...

  9. poj 1286 Necklace of Beads【polya定理+burnside引理】

    和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> us ...

随机推荐

  1. HTTP Status 404(The requested resource is not available)的几种解决方法

    原因:servlet没有配置正确 ,查看web.xml确认正确,以及自己的请求路径正确 在IE中提示“404”错误有以下三种情况 1.未部署Web应用 2.URL输入错误 排错方法: 首先,查看URL ...

  2. mvc之验证IEnumerable<T> 类型

    假设我们有这么一种需求,我们要同时添加年级和年级下面的多个班级,我们一般会像下面这种做法. Action中我们这样接收: [HttpPost] public ActionResult CreateGr ...

  3. JNI(5)The Invocation API

    调用API允许软件提供商加载Java VM 到任意的本地应用中.供应商可以提供支持Java的应用程序而无需链接Java VM的代码. 概述 下面代码展示了通过调用API如何使用函数.这个例子中C++代 ...

  4. CentOS7 安装chrome浏览器

    本篇文章主要记录如何在CentOS7.0上安装chrome. 1.配置yum下载源: 在目录 /etc/yum.repos.d/ 下新建文件 google-chrome.repo, 并且在该文件中添加 ...

  5. css布局&初始化&基准样式

    学习css布局比较好的网站 学习css布局 1.css设置模块 typography(字体) colour(颜色) link(链接) forms(表单) layout(布局) navigation(导 ...

  6. 什么是工程师文化?各位工程师是为什么活的?作为一个IT或互联网公司为什么要工程师文化?

    为什么要工程师文化? 看看最近二十年来社会的发展,计算机和互联网已经渗透到了这个社会的每一个角落,各式各样的计算机技术成为了整个世界发展的强大引擎,各式各样的创新,无论是业务创新还是技术创新,都是依托 ...

  7. redis cluster 集群搭建步骤和注意事项

    1.安装Ubuntu ,修改root的密码. sudo passwd  (apt-get update 更新系统) 2.安装 Gcc 和G++  sudo apt-get install build- ...

  8. ASP.NET常用编程代码(二)

    1.绑定在DataList中的DropDownList private void dlistOrder_EditCommand(object source, System.Web.UI.WebCont ...

  9. OC随笔一:类

    总结:        在oc中,我们要整出一个类来,首先需要一个.h头文件和一个.m实现文件.一般我们创建的类都继承了根类,因为根类帮我们实现了很多实用的方法,而类里面会有变量(属性) .函数(方法) ...

  10. 获取GET/POST提交的数据,并处理中文问题

    1.获取input标签中的值,用request.getParameter("User")(User为input的name值) 2. 获取checkbox的值,由于是多选的,所以不能 ...