uva 10061 How many zero's and how many digits ?
How many zeros and how many digits?
Input: standard input
Output: standard output
Given a decimal integer number you will have to find out how many trailing zeros will be there in its factorial in a given number system and also you will have to find how many digits will its factorial have in a given number system? You can assume that for a bbased number system there are b different symbols to denote values ranging from 0 ... b-1.
Input
There will be several lines of input. Each line makes a block. Each line will contain a decimal number N (a 20bit unsigned number) and a decimal number B (1<B<=800), which is the base of the number system you have to consider. As for example 5! = 120 (in decimal) but it is 78 in hexadecimal number system. So in Hexadecimal 5! has no trailing zeros
Output
For each line of input output in a single line how many trailing zeros will the factorial of that number have in the given number system and also how many digits will the factorial of that number have in that given number system. Separate these two numbers with a single space. You can be sure that the number of trailing zeros or the number of digits will not be greater than 2^31-1
Sample Input:
2 10
5 16
5 10
Sample Output:
0 1
0 2
1 3
题目大意:求n!的bas进制m的位数和后面0的个数。
解题思路:1,求位数:当base为10时,10^(m-1) < n < 10 ^m,两边同去log10,m - 1 < log10(n) < m,n 的位数为(m-1).
PS:<1>log10(a * b) = log10(a) + log10(b) 求n!的位数时。
<2>logb(a) = log c(a) / log c(b)转换进制位数。
<3>浮点数的精度问题,求位数需要用到log函数,log函数的计算精度有误差。所以 最后需要对和加一个1e-9再floor才能过。
2,将n!分解成质因子,储存在数组里面,在对bas做多次分解,直到数组中的元素小于0.
#include<stdio.h>
#include<string.h>
#include<math.h> #define N 10000
int num[N]; int count_digit(int n, int bas){
double sum = 0;
for (int i = 1; i <= n; i++)
sum += log10(i);
sum = sum / log10(bas);
return floor(sum + 1e-9) + 1;
} int count_zore(int n, int bas){
memset(num, 0, sizeof(num)); for (int i = 2; i <= n; i++){
int g = i;
for (int j = 2; j <= g && j <= bas; j++){
while (g % j == 0){
num[j]++;
g = g / j;
}
}
} int cnt = 0; while (1){
int g = bas; for (int j = 2; j <= bas; j++){
while (g % j == 0){
if (num[j] > 0)
num[j]--;
else
goto out;
g = g / j;
}
}
cnt++;
}
out:
return cnt;
} int main(){
int n, bas;
while (scanf("%d%d", &n, &bas) != EOF){
int ndigit = count_digit(n, bas);
int nzore = count_zore(n, bas);
printf("%d %d\n", nzore, ndigit);
}
return 0;
}
uva 10061 How many zero's and how many digits ?的更多相关文章
- UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)
题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k. k暂时不用直接转成b进制. (1 ...
- How many zero's and how many digits ? UVA - 10061
Given a decimal integer number you will have to find out how many trailing zeros will be there in it ...
- Uva 10061 进制问题
题目大意:让求n!在base进制下的位数以及末尾0的连续个数. 多少位 log_{10}256=log_{10}210^2+log_{10}510^1+log_{10}6*10^0 可以发现,只和最高 ...
- UVA - 10061 How many zero's and how many digits ?
n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...
- uva 10061(数学)
题解:题目要在b进制下输出的是一个数字阶乘后有多少个零,然后输出一共同拥有多少位.首先计算位数,log(n)/log(b) + 1就是n在b进制下有多少位,而log有个公式就是log(M×N) = l ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- n!在k进制下的后缀0
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...
- 2003-Can't connect to mysql server on localhost (10061)
mysql数据库出现2003-Can't connect to mysql server on localhost (10061)问题 解决办法:查看wampserver服务器是否启动,如果没有启动启 ...
- VNC connect:Connection refused(10061)
在Windows机器上使用VNC Viewer访问Linux服务器,有时候会遇到"connect:Connection refused(10061)"这个错误,导致这个错误出现的原 ...
随机推荐
- html Table实现表头固定
最近一直在搞前台琐碎的东西,也学习了一下linux,没有时间对新的东西进行深入的研究和学习,没有写博客,不过归咎其原因还是在于自己的惰怠. 废话不多说,今天想将一个前台页面设计的一个小东西分享一下,那 ...
- php 之 数据访问 增删改查练习题
练习题内容: 一.查看新闻页面-----主页面: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...
- linux 下 重启apache
重启 apache #service httpd restart
- HTML&CSS基础学习笔记1.15-合并单元格
合并单元格 之前的文章中,我们已经能够创建一个简单地表格了,如果我们需要把横向的某两个相邻单元格<td>或者纵向的某两个相邻单元格<td>合并,我们该怎么做呢?我们要知道的知识 ...
- const int *p,int *const p区别(转)
1)先从const int i说起.使用const修饰的i我们称之为符号常量.即,i不能在其他地方被重新赋值了.注意:const int i与int const i是等价的,相同的,即const与in ...
- nodejs教程
http://www.yiibai.com/nodejs/ http://www.runoob.com/nodejs/nodejs-tutorial.html http://www.runoob.co ...
- 2015第24周一Spring事务
1. Spring事务管理简介 (1)Spring为多种不同类型的事务管理机制提供统一编程模型,这些事务管理模型包括JTA.JDBC.Hibernate.JPA和JDO. (2)Spring支持声明式 ...
- bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...
- 深入理解linux网络技术内幕读书笔记(四)--通知链
Table of Contents 1 概述 2 定义链 3 链注册 4 链上的通知事件 5 网络子系统的通知链 5.1 包裹函数 5.2 范例 6 测试实例 概述 [注意] 通知链只在内核子系统之间 ...
- jQuery插件开发 格式与解析2
最近忙里偷闲玩一下js插件,经过自身的练习,感觉js插件还是挺好玩的.特此作如下笔记,给自己留个印象.例子形如: (1)类插件:classTool.js Code: (function($,expor ...