在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO。本篇文件打算详细全面,深入浅出。剖析文件IO的细节。从多个角度探索如何提高IO性能。本文尽量用通俗易懂的视角去阐述。不copy内核代码。

阐述之前,要先有个大视角,让我们站在万米高空,鸟瞰我们的文件IO,它们设计是分层的,分层有2个好处,一是架构清晰,二是解耦。让我们看一下下面这张图。

1. 穿越各层写文件方式

程序的最终目的是要把数据写到磁盘上, 但是系统从通用性和性能角度,尽量提供一个折中的方案来保证这些。让我们来看一个最常用的写文件典型example,也是路径最长的IO。

{

char *buf = malloc(MAX_BUF_SIZE);

strncpy(buf, src, , MAX_BUF_SIZE);

fwrite(buf, MAX_BUF_SIZE, 1, fp);

fclose(fp);

}

这里malloc的buf对于图层中的application buffer,即应用程序的buffer;调用fwrite后,把数据从application buffer 拷贝到了 CLib buffer,即C库标准IObuffer。fwrite返回后,数据还在CLib buffer,如果这时候进程core掉。这些数据会丢失。没有写到磁盘介质上。当调用fclose的时候,fclose调用会把这些数据刷新到磁盘介质上。除了fclose方法外,还有一个主动刷新操作fflush 函数,不过fflush函数只是把数据从CLib buffer 拷贝到page cache 中,并没有刷新到磁盘上,从page cache刷新到磁盘上可以通过调用fsync函数完成。

从上面类子看到,一个常用的fwrite函数过程,基本上历经千辛万苦,数据经过多次copy,才到达目的地。有人心生疑问,这样会提高性能吗,反而会降低性能吧。这个问题先放一放。

有人说,我不想通过fwrite+fflush这样组合,我想直接写到page cache。这就是我们常见的文件IO调用read/write函数。这些函数基本上是一个函数对应着一个系统调用,如sys_read/sys_write. 调用write函数,是直接通过系统调用把数据从应用层拷贝到内核层,从application buffer 拷贝到 page cache 中。

系统调用,write会触发用户态/内核态切换?是的。那有没有办法避免这些消耗。这时候该mmap出场了,mmap把page cache 地址空间映射到用户空间,应用程序像操作应用层内存一样,写文件。省去了系统调用开销。

那如果继续刨根问底,如果想绕过page cache,直接把数据送到磁盘设备上怎么办。通过open文件带上O_DIRECT参数,这是write该文件。就是直接写到设备上。

如果继续较劲,直接写扇区有没有办法。这就是所谓的RAW设备写,绕开了文件系统,直接写扇区,想fdsik,dd,cpio之类的工具就是这一类操作。

2. IO调用链

列举了上述各种穿透各种cache 层写操作,可以看到系统提供的接口相当丰富,满足你各种写要求。下面通过讲解图一,了解一下文件IO的调用链。

fwrite是系统提供的最上层接口,也是最常用的接口。它在用户进程空间开辟一个buffer,将多次小数据量相邻写操作先缓存起来,合并,最终调用write函数一次性写入(或者将大块数据分解多次write调用)。

Write函数通过调用系统调用接口,将数据从应用层copy到内核层,所以write会触发内核态/用户态切换。当数据到达page cache后,内核并不会立即把数据往下传递。而是返回用户空间。数据什么时候写入硬盘,有内核IO调度决定,所以write是一个异步调用。这一点和read不同,read调用是先检查page cache里面是否有数据,如果有,就取出来返回用户,如果没有,就同步传递下去并等待有数据,再返回用户,所以read是一个同步过程。当然你也可以把write的异步过程改成同步过程,就是在open文件的时候带上O_SYNC标记。

数据到了page cache后,内核有pdflush线程在不停的检测脏页,判断是否要写回到磁盘中。把需要写回的页提交到IO队列——即IO调度队列。又IO调度队列调度策略调度何时写回。

提到IO调度队列,不得不提一下磁盘结构。这里要讲一下,磁头和电梯一样,尽量走到头再回来,避免来回抢占是跑,磁盘也是单向旋转,不会反复逆时针顺时针转的。从网上copy一个图下来,具体这里就不介绍。

IO队列有2个主要任务。一是合并相邻扇区的,而是排序。合并相信很容易理解,排序就是尽量按照磁盘选择方向和磁头前进方向排序。因为磁头寻道时间是和昂贵的。

这里IO队列和我们常用的分析工具IOStat关系密切。IOStat中rrqm/s wrqm/s表示读写合并个数。avgqu-sz表示平均队列长度。

内核中有多种IO调度算法。当硬盘是SSD时候,没有什么磁道磁头,人家是随机读写的,加上这些调度算法反而画蛇添足。OK,刚好有个调度算法叫noop调度算法,就是什么都不错(合并是做了)。刚好可以用来配置SSD硬盘的系统。

从IO队列出来后,就到了驱动层(当然内核中有更多的细分层,这里忽略掉),驱动层通过DMA,将数据写入磁盘cache。

至于磁盘cache时候写入磁盘介质,那是磁盘控制器自己的事情。如果想要睡个安慰觉,确认要写到磁盘介质上。就调用fsync函数吧。可以确定写到磁盘上了。

3. 一致性和安全性

谈完调用细节,再将一下一致性问题和安全问题。既然数据没有到到磁盘介质前,可能处在不同的物理内存cache中,那么如果出现进程死机,内核死,掉电这样事件发生。数据会丢失吗。

当进程死机后:只有数据还处在application cache或CLib cache时候,数据会丢失。数据到了page cache。进程core掉,即使数据还没有到硬盘。数据也不会丢失。

当内核core掉后,只要数据没有到达disk cache,数据都会丢失。

掉电情况呢,哈哈,这时候神也救不了你,哭吧。

那么一致性呢,如果两个进程或线程同时写,会写乱吗?或A进程写,B进程读,会写脏吗?

文章写到这里,写得太长了,就举出各种各样的例子。讲一下大概判断原则吧。fwrite操作的buffer是在进程私有空间,两个线程读写,肯定需要锁保护的。如果进程,各有各的地址空间。是否要加锁,看应用场景。

write操作如果写大小小于PIPE_BUF(一般是4096),是原子操作,能保证两个进程“AAA”,“BBB”写操作,不会出现“ABAABB”这样的数据交错。O_APPEND 标志能保证每次重新计算pos,写到文件尾的原子性。

数据到了内核层后,内核会加锁,会保证一致性的。

4. 性能问题

性能从系统层面和设备层面去分析;磁盘的物理特性从根本上决定了性能。IO的调度策略,系统调用也是致命杀手。

磁盘的寻道时间是相当的慢,平均寻道时间大概是在10ms,也就是是每秒只能100-200次寻道。

磁盘转速也是影响性能的关键,目前最快15000rpm,大概就每秒500转,满打满算,就让磁头不寻道,设想所有的数据连续存放在一个柱面上。大家可以算一下每秒最多可以读多少数据。当然这个是理论值。一般情况下,盘片转太快,磁头感应跟不上,所以需要转几圈才能完全读出磁道内容。

另外设备接口总线传输率是实际速率的上限。

另外有些等密度磁盘,磁盘外围磁道扇区多,线速度快,如果频繁操作的数据放在外围扇区,也能提高性能。

利用多磁盘并发操作,也不失为提高性能的手段。

这里给个业界经验值:机械硬盘顺序写~30MB,顺序读取速率一般~50MB好的可以达到100多M, SSD读达到~400MB,SSD写性能和机械硬盘差不多。

Ps:

O_DIRECT 和 RAW设备最根本的区别是O_DIRECT是基于文件系统的,也就是在应用层来看,其操作对象是文件句柄,内核和文件层来看,其操作是基于inode和数据块,这些概念都是和ext2/3的文件系统相关,写到磁盘上最终是ext3文件。

而RAW设备写是没有文件系统概念,操作的是扇区号,操作对象是扇区,写出来的东西不一定是ext3文件(如果按照ext3规则写就是ext3文件)。

一般基于O_DIRECT来设计优化自己的文件模块,是不满系统的cache和调度策略,自己在应用层实现这些,来制定自己特有的业务特色文件读写。但是写出来的东西是ext3文件,该磁盘卸下来,mount到其他任何linux系统上,都可以查看。

而基于RAW设备的设计系统,一般是不满现有ext3的诸多缺陷,设计自己的文件系统。自己设计文件布局和索引方式。举个极端例子:把整个磁盘做一个文件来写,不要索引。这样没有inode限制,没有文件大小限制,磁盘有多大,文件就能多大。这样的磁盘卸下来,mount到其他linux系统上,是无法识别其数据的。

两者都要通过驱动层读写;在系统引导启动,还处于实模式的时候,可以通过bios接口读写raw设备。

漫谈linux文件IO的更多相关文章

  1. 转 漫谈linux文件IO

    在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO.本篇文件打算详细全面,深入浅出.剖析文件IO的细节.从多个角度探索如何提高IO性能.本文尽量用 ...

  2. 【转】漫谈linux文件IO--io流程讲的很清楚

    [转]漫谈linux文件IO--io流程讲的很清楚 这篇文章写的比较全面,也浅显易懂,备份下.转载自:http://blog.chinaunix.net/uid-27105712-id-3270102 ...

  3. 转:Linux 文件IO理解

    源地址http://blog.csdn.net/lonelyrains/article/details/6604851 linux文件IO操作有两套大类的操作方式:不带缓存的文件IO操作,带缓存的文件 ...

  4. linux 文件IO

    1.文件描述符 (1)文件描述符的本质是一个数字,这个数字本质上是进程表中文件描述符表的一个表项,进程通过文件描述符作为index去索引查表得到文件表指针,再间接访问得到这个文件对应的文件表.(2)文 ...

  5. <摘录>linux文件IO

    这篇文章写的比较全面,也浅显易懂,备份下.转载自:http://blog.chinaunix.net/uid-27105712-id-3270102.html 在Linux 开发中,有几个关系到性能的 ...

  6. 2.Linux文件IO编程

    2.1Linux文件IO概述 2.1.0POSIX规范 POSIX:(Portable Operating System Interface)可移植操作系统接口规范. 由IEEE制定,是为了提高UNI ...

  7. linux文件io与标准io

    文件IO实际是API,Linux对文件操作主要流程为:打开(open),操作(write.read.lseek),关闭(close). 1.打开文件函数open(): 涉及的头文件:  #includ ...

  8. Linux文件IO操作

    来源:微信公众号「编程学习基地」 目录 文件操作 Linux文件类型 Linux文件权限 修改文件权限 Linux error 获取系统调用时的错误描述 打印错误信息 系统IO函数 open/clos ...

  9. linux文件IO操作篇 (一) 非缓冲文件

    文件IO操作分为 2 种 非缓冲文件IO 和 缓冲文件IO 它们的接口区别是 非缓冲 open() close() read() write() 缓冲 fopen() fclose() fread() ...

随机推荐

  1. hibernate错题解析

    01 Hibernate错题分析   解析: 此题目考查的是对Hibernate中交叉连接的理解.HQL支持SQL风格的交叉连接查询,交叉连接适用于两个类之间没有定义任何关联时.在where字句中,通 ...

  2. JQuery的父、子、兄弟节点查找,节点的子节点循环

    Query.parent(expr)           //找父元素 jQuery.parents(expr)          //找到所有祖先元素,不限于父元素 jQuery.children( ...

  3. tomcat 7配置数据库连接池,使用SQL Server2005实现

    昨 天看了一些网上的tomcat数据库连接池配置的东西,但是一直没配好,主要原因是网上的文章几乎没有针对tomcat 7进行配置的,而且针对SQL SERVER的也不多,今天上午看了官方的文档,花了一 ...

  4. Cocos2d-x3.0游戏实例之《别救我》第二篇——创建物理世界

    这篇我要给大家介绍两个知识点: 1. 创建游戏物理世界 2. 没了(小若:我噗) 害怕了?不用操心.这太简单了~! 笨木头花心贡献.啥?花心?不呢.是用心~ 转载请注明,原文地址:http://www ...

  5. [RxJS] Completing a Stream with TakeWhile

    Subscribe can take three params: subscribe( (x)=> console.log(x), err=> console.log(err), ()=& ...

  6. Android自定义控件(四)——让每一个Activity UI都具有弹性

    前面我们已经介绍了如何让你的ScrollView,ListView具有弹性, 今天,我们在前面的基础上,做一下适当的修改,让那些既不是ScrollView,也不是ListView的Activity页面 ...

  7. Android自定义控件(一)——开关控件

    Google 在 API 14 开始才新增了Switch 控件. 因此,我们可以选择自己封装一个Switch . 效果如图: View主要代码: public class SwitchView ext ...

  8. 关于C语言中的inline

    在c中,为了解决一些频繁调用的小函数大量消耗栈空间或是叫栈内存的问题,特别的引入了inline修饰符,表示为内联函数.栈空间就是指放置程式的局部数据也就是函数内数据的内存空间,在系统下,栈空间是有限的 ...

  9. SDK命令行操作

    * 使用前需要先在path中添加Android SDK的环境变量,跟Java JDK的配置相同 我当前目录如下:F:\Program\Android SDK\tools:F:\Program\Andr ...

  10. post请求和get请求的区别

    1:如果表单是以post方式发送,那么表单中的数据会放在请求报文体中,发送到服务端.但是如果是以get方式提交表单,那么表单中用户输入的数据都是以URL地址的方式发送到服务端. 2:在服务端接收数据时 ...