Sqrt(x) 解答
Question
Implement int sqrt(int x)
.
Compute and return the square root of x.
Solution 1 -- O(log n)
常规做法是用的binary search。注意这里mid一定要是long类型,否则mid * mid会溢出。
public class Solution {
public int mySqrt(int x) {
// Use long instead of int
long start = 1, end = x, mid;
while (start + 1 < end) {
mid = (end - start) / 2 + start;
long tmp = mid * mid;
if (tmp == x) {
return (int) mid;
} else if (tmp < x) {
start = mid;
} else {
end = mid;
}
}
if (end * end <= x)
return (int) end;
return (int) start;
}
}
Solution 2 -- Constant Time
我们可以通过以下数学公式缩小问题规模:
因此,问题转换成如何求 log2N
注意到对于任何数,它的binary representation可以表示为Σ2i
所以 log2N 的取值范围为[i, i + 1] i 为最高位的位数。
因此我们就缩小了二分查找的范围。
public class Solution {
public int mySqrt(int x) {
int num = x, digit = 0;
while (num > 0) {
num = num >> 1;
digit++;
}
int candidate1 = (int) Math.pow(2, 0.5 * digit);
int candidate2 = (int) Math.pow(2, 0.5 * (digit - 1));
long start = candidate2, end = candidate1, mid;
while (start + 1 < end) {
mid = (end - start) / 2 + start;
long tmp = mid * mid;
if (tmp == x)
return (int) mid;
if (tmp < x)
start = mid;
else
end = mid;
}
if (end * end <= x)
return (int) end;
return (int) start;
}
}
Sqrt(x) 解答的更多相关文章
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- [问题2014A09] 解答
[问题2014A09] 解答 通过简单的计算可得 \[(AB)^2=9AB,\cdots\cdots(1)\] 将 (1) 式的右边移到左边, 并将 \(A,B\) 分别提出可得 \[A(BA-9I ...
- [问题2014S13] 解答
[问题2014S13] 解答 (1) 先证必要性:若 \(A=LU\) 是 非异阵 \(A\) 的 \(LU\) 分解,则 \(L\) 是主对角元全部等于 1 的下三角阵,\(U\) 是主对角元全部 ...
- 《数据结构与算法分析:C语言描述_原书第二版》CH2算法分析_课后习题_部分解答
对于一个初学者来说,作者的Solutions Manual把太多的细节留给了读者,这里尽自己的努力给出部分习题的详解: 不当之处,欢迎指正. 1. 按增长率排列下列函数:N,√2,N1.5,N2,N ...
- 快学Scala习题解答—第一章 基础
1 简介 近期对Scala比较感兴趣,买了本<快学Scala>,感觉不错.比<Programming Scala:Tackle Multi-Core Complexity on th ...
- 应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]
应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010 ...
- MT【256】2016四川高考解答压轴题
(2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$. 1)讨论$f(x)$的单调性;2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x} ...
- LeetCode题目解答
LeetCode题目解答——Easy部分 Posted on 2014 年 11 月 3 日 by 四火 [Updated on 9/22/2017] 如今回头看来,里面很多做法都不是最佳的,有的从复 ...
- LeetCode算法题目解答汇总(转自四火的唠叨)
LeetCode算法题目解答汇总 本文转自<四火的唠叨> 只要不是特别忙或者特别不方便,最近一直保持着每天做几道算法题的规律,到后来随着难度的增加,每天做的题目越来越少.我的初衷就是练习, ...
随机推荐
- input文本框获取焦点和失去焦点判断
onBlur:当输入框失去焦点后 onFocus:当输入框获得焦点后 这两个JavaScript事件是写在html标签中的例如: <input type="text" onB ...
- 未能加载文件或程序集 system.data.sqlite 完美解决
错误提示如下图所示: 解决办法: 使用SQLITE 预编译的静态链接DLL 下载地址:http://pan.baidu.com/s/1kT5i8bP
- 探索A@1db9742
public class S { /** * @param args */ public static void main(String[] args) { System.out.printl ...
- 有关SetTimer函数的用法
1 )用WM_TIMER来设置定时器 先请看SetTimer这个API函数的原型 UINT_PTR SetTimer( HWND hWnd, // 窗口句柄 UINT_PTR nIDEvent, // ...
- MDX示例:求解中位数、四分位数(median、quartile)
一个人力资源咨询集团通过网络爬虫采集手段将多个知名招聘网站上发布的求职和招聘等信息准实时采集到自己的库里,形成一个数据量浩大的招聘信息库,跟踪全国招聘和求职的行业.工种.职位.待遇等信息,并通过商业智 ...
- AIX下解决POWERHA的脑裂问题
一.安装创建并发vg时必需的软件包clvm包,该包安装.升级.后必须重启os clvm包的描述:Enhanced Concurrent Logical Volume Manager 软件包在aix61 ...
- 图文-水平垂直居中兼容ie6+
图文-水平垂直居中兼容ie6+ 具体代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8&q ...
- phpmyadmin开启远程服务器连接
1.修改 braries/config.default.php,将 $cfg['AllowArbitraryServer'] 的值由 false 改成 true. 2.有其他需求的也可以自己在这里修 ...
- python - num1 -初识python
一.了解python python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC ...
- secure_file_priv 配置项对数据导入导出的影响
secure_file_priv mysqld 用这个配置项来完成对数据导入导出的限制. 例如我们可以通过 select * from tempdb.t into outfile '/home/my ...