frame和bounds的区别
- frame:根据父视图坐标系来确定自己的位置
- bounds:该视图在自己坐标系的位置和大小
- 修改bounds并不会引起视图位置的变化,会影响自身子视图的位置;修改frame会引起视图位置的变化
UIView *view1 = [[UIView alloc] init];
view1.frame = CGRectMake(, , , );
[self.wiew addSubview:view1]; UIView *view2 = [[UIView alloc] initWithFrame:CGRectMake(, , , )];
view2.backgroundColor = [UIColor yellowColor];
[view1 addSubview:view2];
这时显示的视图是
此时没有设置bounds,View1自己的坐标远点是(0,0),这是添加View2时,以(0,0)为原点计算偏移(50,50);
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAP8AAAEdCAYAAADD87H3AAAKpmlDQ1BJQ0MgUHJvZmlsZQAASImVlgdUU1kax+97L73QApFO6B3pBJBeAyhIBxshARJKDIHQ7MjgCIwFFRGsyFBEwbEAYkMsWBgE7HWCDALqOFiwoTIPWMLO7tnds1/Ozfc7X+77v+/e3HvOHwBKF1soTIXlAEgTZIpC/TwZ0TGxDLwEwEAFyAMaMGNzMoQeISFBAI2Z/Pf4cBdAk/mW+aTWv//+X0Oem5DBAQAKQTmem8FJQ/kEOo5xhKJMABAeWtfNzhROcgnKiiK0QZT3T3LSNJ+Y5Phpvjo1JzzUC+XHABAobLYoCQDyMFpnZHGSUB0KAWVLAZcvQJmJsiuHx+ainIOyWVra8kmuRtko/p90kv6mGS/VZLOTpDy9lqkgePMzhKns3P9zO/53pKWKZ96hgw4KT+QfimYSumd1KcsDpSyIXxA8w3zu1Pwp5on9I2aYk+EVO8NctnfgDItTIjxmmC2afZafyQqfYdHyUKm+IHVBkFQ/gSXlhAyfsBlO5PuyZjiPFx41w1n8yAUznJESFjg7x0taF4lDpT0ninyla0zLmO2Nw559VyYv3H+2h2hpP9wEbx9pXRAhnS/M9JRqClNDZvtP9ZPWM7LCpM9mogdshpPZASGzOiHS/QHW6McB2AN0pZkJOZmTjXotF+aK+Em8TIYHelMSGCwBx8KMYW1pZQ/A5L2b/lvf0afuE0S/PlsT9QDg+B49fymztWVLAWhG0OOOn63p1QEgRwTg9GmOWJQ1XcNMfmHRrmSBInqrNYEuMALmaHf2wBm4Ax8QAIJBOIgBSwEH8EAaEIFssBKsA4WgGGwBO0AF2AcOgjpwBBwDLeAMuACugBugB9wBj4AEDIKXYBR8AOMQBOEhKkSDVCAtSB8yhawhJuQK+UBBUCgUA8VBSZAAEkMrofVQMVQKVUAHoHroF+gUdAG6BvVCD6B+aAR6C32BEZgCK8IasAE8F2bCHnAgHA4vgZPgdDgPLoA3weVwFXwYboYvwDfgO7AEfgmPIQAhI3REGzFHmIgXEozEIomICFmNFCFlSBXSiLQhncgtRIK8Qj5jcBgahoExxzhj/DERGA4mHbMaU4KpwNRhmjGXMLcw/ZhRzHcsFauONcU6YVnYaGwSNhtbiC3D1mBPYi9j72AHsR9wOBwdZ4hzwPnjYnDJuBW4EtweXBOuHdeLG8CN4fF4Fbwp3gUfjGfjM/GF+F34w/jz+D78IP4TgUzQIlgTfAmxBAEhn1BGOEQ4R+gjDBHGiXJEfaITMZjIJeYSNxOriW3Em8RB4jhJnmRIciGFk5JJ60jlpEbSZdJj0jsymaxDdiQvJPPJa8nl5KPkq+R+8meKAsWE4kVZTBFTNlFqKe2UB5R3VCrVgOpOjaVmUjdR66kXqU+pn2RoMhYyLBmuzBqZSplmmT6Z17JEWX1ZD9mlsnmyZbLHZW/KvpIjyhnIecmx5VbLVcqdkrsnNyZPk7eSD5ZPky+RPyR/TX5YAa9goOCjwFUoUDiocFFhgIbQdGleNA5tPa2adpk2qIhTNFRkKSYrFiseUexWHFVSULJVilTKUapUOqskoSN0AzqLnkrfTD9Gv0v/MkdjjsechDkb5zTO6ZvzUVlN2V05QblIuUn5jvIXFYaKj0qKylaVFpUnqhhVE9WFqtmqe1Uvq75SU1RzVuOoFakdU3uoDqubqIeqr1A/qN6lPqahqeGnIdTYpXFR45UmXdNdM1lzu+Y5zREtmparFl9ru9Z5rRcMJYYHI5VRzrjEGNVW1/bXFmsf0O7WHtcx1InQyddp0nmiS9Jl6ibqbtft0B3V09Kbr7dSr0HvoT5Rn6nP09+p36n/0cDQIMpgg0GLwbChsiHLMM+wwfCxEdXIzSjdqMrotjHOmGmcYrzHuMcENrEz4ZlUmtw0hU3tTfmme0x7zbBmjmYCsyqze+YUcw/zLPMG834LukWQRb5Fi8XruXpzY+dunds597ulnWWqZbXlIysFqwCrfKs2q7fWJtYc60rr2zZUG1+bNTatNm9sTW0TbPfa3rej2c2322DXYffN3sFeZN9oP+Kg5xDnsNvhHlORGcIsYV51xDp6Oq5xPOP42cneKdPpmNOfzubOKc6HnIfnGc5LmFc9b8BFx4XtcsBF4spwjXPd7ypx03Zju1W5PXPXdee617gPeRh7JHsc9njtaekp8jzp+dHLyWuVV7s34u3nXeTd7aPgE+FT4fPUV8c3ybfBd9TPzm+FX7s/1j/Qf6v/PZYGi8OqZ40GOASsCrgUSAkMC6wIfBZkEiQKapsPzw+Yv23+4wX6CwQLWoJBMCt4W/CTEMOQ9JDTC3ELQxZWLnweahW6MrQzjBa2LOxQ2Idwz/DN4Y8ijCLEER2RspGLI+sjP0Z5R5VGSaLnRq+KvhGjGsOPaY3Fx0bG1sSOLfJZtGPR4GK7xYWL7y4xXJKz5NpS1aWpS88uk13GXnY8DhsXFXco7is7mF3FHotnxe+OH+V4cXZyXnLdudu5IwkuCaUJQ4kuiaWJw0kuSduSRnhuvDLeK74Xv4L/Jtk/eV/yx5TglNqUidSo1KY0Qlpc2imBgiBFcGm55vKc5b1CU2GhUJLulL4jfVQUKKrJgDKWZLRmKqIGp0tsJP5B3J/lmlWZ9Sk7Mvt4jnyOIKcr1yR3Y+5Qnm/ezyswKzgrOlZqr1y3sn+Vx6oDq6HV8as71uiuKVgzuNZvbd060rqUdb/mW+aX5r9fH7W+rUCjYG3BwA9+PzQUyhSKCu9tcN6w70fMj/wfuzfabNy18XsRt+h6sWVxWfHXEk7J9Z+sfir/aWJT4qbuzfab927BbRFsubvVbWtdqXxpXunAtvnbmrczthdtf79j2Y5rZbZl+3aSdop3SsqDylt36e3asutrBa/iTqVnZdNu9d0bd3/cw93Tt9d9b+M+jX3F+77s5++/f8DvQHOVQVXZQdzBrIPPqyOrO39m/lxfo1pTXPOtVlArqQutu1TvUF9/SP3Q5ga4Qdwwcnjx4Z4j3kdaG80bDzTRm4qPgqPioy9+ifvl7rHAYx3HmccbT+if2H2SdrKoGWrObR5t4bVIWmNae08FnOpoc247edridO0Z7TOVZ5XObj5HOldwbuJ83vmxdmH7qwtJFwY6lnU8uhh98falhZe6LwdevnrF98rFTo/O81ddrp655nTt1HXm9ZYb9jeau+y6Tv5q9+vJbvvu5psON1t7HHvaeuf1nutz67twy/vWldus2zfuLLjTezfi7v17i+9J7nPvDz9IffDmYdbD8UdrH2MfFz2Re1L2VP1p1W/GvzVJ7CVn+737u56FPXs0wBl4+XvG718HC55Tn5cNaQ3VD1sPnxnxHel5sejF4Evhy/FXhX/I/7H7tdHrE3+6/9k1Gj06+Eb0ZuJtyTuVd7Xvbd93jIWMPf2Q9mH8Y9EnlU91n5mfO79EfRkaz/6K/1r+zfhb2/fA748n0iYmhGwRe8oKoG4BwImJALytBYAaAwAN9RUkmWlfPBXQtJefIvCfeNo7TwXqXKrbAZi0PUFo3usOgD6aZdcCMGmLwt0BbGMjHf+IjEQb62ktCuousZ8mJt5pAIBvA+CbaGJifM/ExDfUfyMPAGhPn/bjUxZmALW8qKfBv+zZugn8a/wFGucBSaIBuLkAAB1DSURBVHgB7Z1bbBTX/ce/u7bXBl/AxjZgsHHA3AzGELCJwy0hylVRValVq/YhVaWqfW2fqqqqKrUvldq3PvShrdo+VFXVSm2lNiV/GhISLuEWLuaWcDEYsDG2MdgYX3fn/zuzO+vZtXe9MJmcM/H3SOudy5nf7zef3/nOOXNmdx16/PixhQxlZGQE/f39mJycRH5+vv1SVdW6s23RokWYN29eBgupm023N/noNv7vg3NYtnEHmutKcL/rDh5OWMgLhewTySuYh0XVlSjKCyE2MYAP9x/F8uf2YlVFUeqJalibHLmPTy5fxdBYCMULq1C/cgVKI/G4cw3HGhvE7a5+WHl5yUMixeWoXlSKsGwZvd+BAx914rmXdqGiUG35vMoE2g+8i668Ouzd04h8Y+OczsOyxtB17Qpu9TxCwfxi1NQ3YGl5bnqZshbN2hZVvXuXj+LT2DPY2bhk6rBZlvIz7R8fH7eFr/bPnz/frmZZ8etEJBKBejl1qqur7fVMttR2p65aNtGeiiucX4yq4lIsWqDEHMOdyxdxazSmdrnKIux6tRXFsDAhW2OxjNdO1zH+Lk4O9+D9g6cwjiIsXVqCW9cl7utd2PlKG8ryc78AjA31oP3SlWnBltZuxI6mOnW28lJn/XmXMBZWl2OsoAIF4no0xzjTM/d5R21Zo7h4+APcHJxExdKlGO69jdPdt/Co5UWsrnqSC0D2tliqOqNYFNFY7rlWLDKK/9GjR3bvroSqRO8IXx2klkPSG6oLgIwcoOpWVFSoXRmL6fZU4OGicrTs2ZU4hwnEJi2san0RayvjiXrU24EPTlzCpesD2FafqBaO95IxaWnhz7MzTLhXguw8d06EvzAp9g3P3MT/jlzA1a5BPFu3IFlz1gX7BCLSs+9N9OwTuH3pY5zruIjehuV4AkuzunqyCnmo3bgdtc5BOcUZhj2AkcTEpL6O1Dzuvm4Lf03LHjRUSXdhDePkfw/iWnsHVu5txNT4yjmxzO/Z2mLr6uzay2Q1q/jVUF+VdPE7xtQFQNXJVfwm21PnpIbyh/cfQ93zL2DFwumpKamqQ33RJ+ibVL1fgd2gHvVcw8GPOjAsW/KKq9CyfQsqiuLcHnZdxYkzn4owVYmgoXkb1ixbKMtRXD1xCAPzFst47QZ67dFFERpbn0N9ZXyUNTnch9MnT6F3OGofvXT1s2hevWRaI45NPMSNgQnUb91i9/LRaBSRhSvw4s4yTEaK7WMnHvXizKmPp2w9swkb1y+3e1G7QsY/BahZuQqXO47jwfAYFrgUFL/tOYcm1y1A75XjuBqtR9u6ajy9z5mCieLayQ/Qv2AjWldXzVBhpjjHcePCSRy902fXX1S3EZs31KJQ2qwaindeOIcLnb32PpW3rds2o7K4wG4DR9+/iOVyDpfar9hjncIFdWht2WDfRsWPPSPH9tvHuvelBhbF7eu3kV+22hZ+TPIiDQTPvrQHD+RO2+6jYyO43n4Wl+/ctw+dV1aDzds2obzIBTrVaHIttS0mN8vCBD6V0cbjZc9ic325vWP0gdyuHelG28vPobwgjIE7n+LU2avT2lLSytjYmC3s9B4/fV0JWtWdrZhuLx6/hTFJ97j0+MmS6NnVumVNYkL2WdH4gFJdHro77mDF1uewY3sz5g/34uTJDpG2DE37ruGwCL+0bh127tmJDXWluHr2CC52PZK94uPxKHo7r6No1bPYuaMVNcUTuHj8AkaUn+gQjh88joG8xdjWtgPbmlai+8rHOCUjjuklHuvYgxs48PbbeOedd/D22/tw8yFQal+EJnBFhH8fS7Hzhb1oaxZbHedwo290uqnElpC77U2O2xcv96Z4NXXbI6Mjl5XohNS12T25T5eZGRZjeDw4htFJtzcge5wx3HsQQevOnXh2fS36O8/jeuKcu84dtcXb0Nwq7FtQEe0X3kdwf0zZlzYgF9QL7V1o2r4Dz21dB+thJ85e7bHjih87hHWbt2Nn2xZEZN/hQ+0YS9wSTwUvOR6PIVI8ifaj+7FP8rJP8nP0wh2Zkym2hffw9qci/Mdo3r4LL+5uQf5gF061d06ZSF/K0hbdVcfGJjA4Eu9y7O1qWIrHclsgLW+0D8dE+JXrtmQe9ruNzdXlsNwvP+ztRu/kPBHkBO7e/AR3pHGvrVG994gt8vqtbahfHO9hGxs6cfzGY0xKQ+i/c0tuI2qxbeNKe3hXtnEbhvv/h3u9D9FYU41o1ELhko1oWlFt493Q3ICuIzKCkAYYGr6HB7J186b10hvJKKJ8FdbdviXD+HuIrixPGS6ODz2EknH3tZtYIw1yuUw+3uu4hPPtR2WwsQdrq/MxoRp1oYglL4wFy9bhjWVrRLTT5WwHgkn03b2HCZnQmxx7iCvS+0FuKZaUyzyIXFByKZYVy9lndHwYD4ZG5ZZJxRODFS7CwgVxcaT7CqcIbLY4I2h5fhMqpKdDWSNq5SLd2zeItQtH8YkITk3qrlkWv5HZumMbDrx7HP1DY+I77nVV63YsW6TmfhbIhfsWzvXex9hkkX1s5eoW1EsbsGJ5aN48gENnujA0LvksTL3nzo+E8bi7A5H6RuzZsgTj90XcZy7j0Ml87G1ZiTG5ZVYlLB1oZH4Vdr3xhty7K6FOL9nb4gz1U1jF99sZl3Yc95CXWfyFhYX2Pb+6r3d6ezXMdxe1PjExISctLWuWYrq9mcIPyURK37ULeFhQIOcZxTyZ+W7a3obainkyPByxIRa4ZsaLKyphXR2WId04+npGULK8yiXUPCxeWoYbV3sx2lRpuyssiiTdJgYTKZI8c+jd5H61EC4aty8sztMHtS1SvECm+aSJrtuOhpr4MK9ufTMGbv0PPb2DWLd4KdZs3YiHp87jw3dvq0Nk8qkBTU2rUTzjZGBMBH8GBQV5tq/ypc9gS+M6qEmlmcYKtmZtqxJf4j0UKszZZ//1czjpGtGE8pdh78ub7OF5wlyGtxziTOoovmBfPGSCVq2VlEy12VB+RF0bk0XtD8sIwCl5sj8mvWlUnnKp0nflBPalzIsWJc/dOUa9T0rPH8pfgq3rV9jnU1yzEltH+3H08l0MR59B1cqNqB04hdOH37MPCxdVoHnrZiy1J5zdltSFO3NbTK2ZfS1cXI2ta5bj1OWTmcVfUlKCwcFBe1IvXfTKvLNNPfIrKyvL7lH2mm5vphOISo+5qnWvTPgpeWUqU43EaQGq8VfXzEf33fuIyqOXxJQg+u4NoaB8MSJuxcxoNt78Wva+girn/k9mcyesEArSLsCOzxnNJDbOW1SL3a/UIjo+hsdD93DsWDtOF5ZleCwkE34vy4Sf6jFnLeN4LIycuo8ejiCkBkVScvVZva4Nb6yLH/Nkf58kzinLIellldBHRuJCVnus2KTc7qlxR6aibuTCyJdOQD1tqG7ejY3LShKVZZSjHgdP45WH0tJ8WPFphTTDUfvSEoqUoqntBTRJbkdHBnH+8Ec4c+wTVMxw8cutLSbcqFsvdxtLGU1IJ9SwCW/IK2OGlVjV/bx6RKeEroZl6t29rPapOqrubMV0e5njd4k7c6Vpe0orFsn91Q1cuNqNkbER9MhQ/Jo88lm2cnFm6AkrkeJF0pvHcOb0JQyOjmNk8C4O7nsHH5yN99xuZ2F5/LVxVSV6Lp/CDbmlGB8fRdeV8/btSVVVqdyuDOKg3Gu+f/o6JsL50qPHJyrnz3f3dW6LIoLMKrArxndLm5C1m1dvYXh0VG5z5P5VJh7zZbj5ND5TI8htLbc4U22FZNJtaXkBOs8ex63+QYwMD+CSTKyqx6RVpZmZqEtDKK8kcewpdA0MY3xsGFdOHsT+/UfwSG7jUksYy9aqq9pdtF+9g1HRymDvDelxexGpqkWZ9OSdH78r8zMfolcuRAUFERTJrVYoX/KTfoFPGk73kdzhWijAgsoIhmQ+qXdwGMODvThxXA1T4lIfvX9NfL4tcw0PMvf8arivPsCjPuSjHucpkauXKmqo7/6Qj6o7WzHdnhO/QhQOx29vMl4Z7crxxu/UdY4PJYbSJTWN2C49wrELpyHzOnapXd8iw3A1PzAhj6FSb6HCeYpt3GO4sAI7dmzG4cNncOjATfvYogqZcd5Uay+n/6leuwXrh4/i4onDuJjYGfdVYs8qb5H5hCNnL+NA92V7b3HVSqxdnuii041JDNnPuxAROcdwXjmaN6yQ87uEg12XpNFW2PMNg2IvlFeGJ/M5LYhpGwrSeClWucQ5zZCMwxq278T48aNoP3YosbsYm3dstx9vxibiWUjNa54tSpmul5Hg8xg/cQxnjh5MHruprcUWc7qvgrLl2L11BB+cOocDiduEoop6bN+ywq5aI7dnXQ9O4sTB+O1dKL9MJv9WzfgUJvu5Oi0nHsHShkZ03D2NE4fiMS5eVomhO2oqWaZ+ypdj7ZJufCKTz6Fsn/BTlVXvrh7lqZczq6/u31VPrl65CF/ZcYrp9pw4P7N36Z6iavIllAeZb3viEpULbUxmeQtyOHhcRhgxuTXIKyiS+umuJA6ZtxDVyoXnKQJJN+esq9sRmbDIS4wonM3xd598pjp56jX1+E31pSGZt3lSIupYNU+j5kZmK1EZjY1LXuSTBzI/Fu9A3cfEZBIuGgvnZMt9XPZldTui8i23KjOFKHmbVfzZHXAvCZBAUAk86QUvqOfJuEmABNIIUPxpQLhKAnOFAMU/VzLN8ySBNAL5V64kpiHTdnCVBEjgi00gJJ/ey+Xh4RebAs+OBOYgAQ7752DSecokoAhQ/GwHJDBHCVD8czTxPG0SoPjZBkhgjhKY/llDAZEnH3dUvwjjlD//+c/OYvL99ddfn/bTXX/84x/R2NiI1tZWu96JEydw/vx5fPvb304eN9NCW1sb/vnPf2LxYvllm6coP/nJT/CHP/wBw8PDePnll/Hb3/4WCxbo+9GppzgFHvIZEujq6sLu3btzsnjs2DH7OyxOZfUFtkzfqXfqfFHeM872uyGoL/GkF+dLPmr7X//6V3v3wYMHsXz5cqxatcpev379Ojo7O/HCCy/Y61//+tftd+frwPZKlj/ZHkT09PSgpqYmY6KUj7feegvqgsQytwior6L/+te/Tjlp1UH8/Oc/T9mmVr7//e+juDj+Yyyq01PCz9Y+3RcG9fuWo/KNRlVUZ/if//zHXp7pT29vL5YsWZL8bYz33nsPe/bsSVZtb29Hc3Nzct3tJ7nxs15Qj/q8FvmyjiVf+pn1le7nd7/7naVeTpGTtx48eOCsZnxvaGhQjyftV6ZKMgKYtU6mY7n9i0dABJ31pL70pS/Z7UUEbKnXX/7yl5R1Z7tjRNlTbVDEb126dMle/uY3v+nstv7+978nl9WCqvvmm2/a2773ve/Z6+4Kav9LL71kiegtx7Z7vx/L6kqUtTiBOGJzvzsHqjpy5cr6Usc5JZvNmew7xznvt2/ftn7/+987q9a+ffus+vp6S35UxPrhD3+Y3K4W6urqUta5MjcJOG1Ovo4+DYASsGp3SnhO6evrmyZQZ596d7dntf6DH/wgZZva/+Uvf1ntsuRr8ZaMMOxl54/af/r0aXu1srIy5Vi1Md2+c9xn+T6lSJdV5Tjd+a9+9Suro6PDVWtqUYFVxQHsHO+8q31ue059tX3Dhg02dPmHHtaaNWvUJru46zvb0t8//PBD267jx/1O0afTmtvrqs3JUDvZXtJpqAuAu+QiftVmnfKtb30rpY0PDQ05u6a9v/rqqyl1Hd24K6q2/K9//cu96TNfnlH8yss3vvEN25mqYL/UMMdZrqiYWna2qXd3HWd7tm2RiIXvfnfK1uHD8eSoY9UFyLGR6f03v7Hklzem1/vRj3I7PpNdbp/ONOhM3O3wtdfi7aOpaeo8Ex2euwOZcdnhoOzJMb/4xS+s73znO5bMgdnrsjtj+ZHTLuU4NfR3ihK/zF85q/a72qbs+lmUvmYsKeI/c8bCL385BaqkZGpZjk6KNAFkGjR3HbWs6sl9Fe7etSD3SSmv7m4Ld+48uXj37rXk8YOFnp6peNL9cn3uslFt7knynxj2Zz1mzx67nT7//PNiOd5h2Qs5/FHilqdids1MPf/+/ftzsPT0VXITvwKnRPWzn1ny0z1xYbqvmuIfP/5x9peq47zciRAAye2bNk0t59LzO/a++tV4TM7V29nO9ymec52Fu83lwmI28f/735b8wq1Yipddu3bZbdBZVx3gT3/6U3tV3e+rdXdxC76lpSVlvzMH4a7vx3JqRC4PTSJuNTliC/Ottyyok5X9yVc6zGxiTa/rXt+yxYLq7dVr/fop+9nsueNwlhMAk/E52/k+xXQus3C3uVw4zCZ+ZU/a6N/+9jfrK1/5ir3sfnKlxD0wMCCe4kXVLSoqso4cOWKtXr3arn/gwAFnt72uJv7U5LX7wpCs4MPCjM/51f/d+8c//oHXXnsNo3/6E/C1r0nssxT1i6OJf0IwraZ6jur+qVX5IEVyXT4IlFJaWuKryp49kkrZyxUSeDoC7jaXiwX54VpUyv9XyNYG5dk+9u2zran/lPTKK69ktaw+OyMatuuoz6mof3DrFPVcX312Ru1XH3a7e/eus8u39xk/4afErz6AoP6lduii/B6s/CcRXLgg/4NKPtAg25JAhoZSA7t5M3U9lzVH7E7dIvmNfPXvv95/39nCdxIwk8B//2s/Fss1uGwf3HF/qC5Xe17rzdjzu41K/8tCAiSQgUC8H8+w0/DN/GKP4QlieCTgFwGK3y+ytEsChhOg+A1PEMMjAb8IUPx+kaVdEjCcAMVveIIYHgn4RYDi94ss7ZKA4QQofsMTxPBIwC8CFL9fZGmXBAwnQPEbniCGRwJ+EaD4/SJLuyRgOAGK3/AEMTwS8IsAxe8XWdolAcMJUPyGJ4jhkYBfBCh+v8jSLgkYToDiNzxBDI8E/CJA8ftFlnZJwHACFL/hCWJ4JOAXAYrfL7K0SwKGE6D4DU8QwyMBvwhQ/H6RpV0SMJwAxW94ghgeCfhFgOL3iyztkoDhBCh+wxPE8EjALwIUv19kaZcEDCdA8RueIIZHAn4RoPj9Iku7JGA4AYrf8AQxPBLwiwDF7xdZ2iUBwwlQ/IYniOGRgF8EKH6/yNIuCRhOgOI3PEEMjwT8IkDx+0WWdknAcAIUv+EJYngk4BcBit8vsrRLAoYToPgNTxDDIwG/CFD8fpGlXRIwnADFb3iCGB4J+EWA4veLLO2SgOEEKH7DE8TwSMAvAhS/X2RplwQMJ0DxG54ghkcCfhGg+P0iS7skYDgBit/wBDE8EvCLQL5fhk2zayFkWkhzOp4QrDl9/iacPHt+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYCFL8G6HRJAiYQoPhNyAJjIAENBCh+DdDpkgRMIEDxm5AFxkACGghQ/Bqg0yUJmECA4jchC4yBBDQQoPg1QKdLEjCBAMVvQhYYAwloIEDxa4BOlyRgAgGK34QsMAYS0ECA4tcAnS5JwAQCFL8JWWAMJKCBAMWvATpdkoAJBCh+E7LAGEhAAwGKXwN0uiQBEwhQ/CZkgTGQgAYC+Rp8anEZgqXFL52SgKkE2PObmhnGRQI+E6D4fQZM8yRgKgGK39TMMC4S8JkAxe8zYJonAVMJUPymZoZxkYDPBCh+nwHTPAmYSoDiNzUzjIsEfCZA8fsMmOZJwFQCFL+pmWFcJOAzAYrfZ8A0TwKmEqD4Tc0M4yIBnwlQ/D4DpnkSMJUAxW9qZhgXCfhMgOL3GTDNk4CpBCh+UzPDuEjAZwIUv8+AaZ4ETCVA8ZuaGcZFAj4ToPh9BkzzJGAqAYrf1MwwLhLwmQDF7zNgmicBUwlQ/KZmhnGRgM8EKH6fAdM8CZhKgOI3NTOMiwR8JkDx+wyY5knAVAIUv6mZYVwk4DMBit9nwDRPAqYSoPhNzQzjIgGfCVD8PgOmeRIwlQDFb2pmGBcJ+EyA4vcZMM2TgKkEKH5TM8O4SMBnAhS/z4BpngRMJUDxm5oZxkUCPhOg+H0GTPMkYCoBit/UzDAuEvCZAMXvM2CaJwFTCVD8pmaGcZGAzwQofp8B0zwJmEqA4jc1M4yLBHwmQPH7DJjmScBUAhS/qZlhXCTgMwGK32fANE8CphKg+E3NDOMiAZ8JUPw+A6Z5EjCVAMVvamYYFwn4TIDi9xkwzZOAqQQoflMzw7hIwGcCFL/PgGmeBEwlQPGbmhnGRQI+E8ifzb41WwXuJwESCCQB9vyBTBuDJgHvBCh+7wxpgQQCSYDiD2TaGDQJeCdA8XtnSAskEEgCFH8g08agScA7AYrfO0NaIIFAEqD4A5k2Bk0C3glQ/N4Z0gIJBJIAxR/ItDFoEvBOgOL3zpAWSCCQBCj+QKaNQZOAdwIUv3eGtEACgSRA8QcybQyaBLwToPi9M6QFEggkAYo/kGlj0CTgnQDF750hLZBAIAlQ/IFMG4MmAe8EKH7vDGmBBAJJgOIPZNoYNAl4J0Dxe2dICyQQSAIUfyDTxqBJwDsBit87Q1oggUASoPgDmTYGTQLeCVD83hnSAgkEkgDFH8i0MWgS8E6A4vfOkBZIIJAEKP5Apo1Bk4B3AhS/d4a0QAKBJEDxBzJtDJoEvBOg+L0zpAUSCCQBij+QaWPQJOCdAMXvnSEtkEAgCVD8gUwbgyYB7wQofu8MaYEEAkmA4g9k2hg0CXgnQPF7Z0gLJBBIAhR/INPGoEnAOwGK3ztDWiCBQBKg+AOZNgZNAt4JUPzeGdICCQSSAMUfyLQxaBLwToDi986QFkggkAQo/kCmjUGTgHcCFL93hrRAAoEkQPEHMm0MmgS8E6D4vTOkBRIIJAGKP5BpY9Ak4J0Axe+dIS2QQCAJUPyBTBuDJgHvBCh+7wxpgQQCSYDiD2TaGDQJeCdA8XtnSAskEEgCFH8g08agScA7AYrfO0NaIIFAEqD4A5k2Bk0C3glQ/N4Z0gIJBJIAxR/ItDFoEvBOgOL3zpAWSCCQBP4f8+jMP66hQOYAAAAASUVORK5CYII=" alt="" />
UIView *view1 = [[UIView alloc] init];
view1.frame = CGRectMake(, , , );
view1.bounds = CGRectMake(, , , );
[self.wiew addSubview:view1]; UIView *view2 = [[UIView alloc] initWithFrame:CGRectMake(, , , )];
view2.backgroundColor = [UIColor yellowColor];
[view1 addSubview:view2];
这时显示的视图是
此时View1设置里bounds,自己的坐标原点变为(50,50),添加View2时,以(50,50)为原点计算偏移
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOAAAAEACAYAAACqHnrXAAAKpmlDQ1BJQ0MgUHJvZmlsZQAASImVlgdUU1kax+97L73QApFO6B3pBJBeAyhIBxshARJKDIHQ7MjgCIwFFRGsyFBEwbEAYkMsWBgE7HWCDALqOFiwoTIPWMLO7tnds1/Ozfc7X+77v+/e3HvOHwBKF1soTIXlAEgTZIpC/TwZ0TGxDLwEwEAFyAMaMGNzMoQeISFBAI2Z/Pf4cBdAk/mW+aTWv//+X0Oem5DBAQAKQTmem8FJQ/kEOo5xhKJMABAeWtfNzhROcgnKiiK0QZT3T3LSNJ+Y5Phpvjo1JzzUC+XHABAobLYoCQDyMFpnZHGSUB0KAWVLAZcvQJmJsiuHx+ainIOyWVra8kmuRtko/p90kv6mGS/VZLOTpDy9lqkgePMzhKns3P9zO/53pKWKZ96hgw4KT+QfimYSumd1KcsDpSyIXxA8w3zu1Pwp5on9I2aYk+EVO8NctnfgDItTIjxmmC2afZafyQqfYdHyUKm+IHVBkFQ/gSXlhAyfsBlO5PuyZjiPFx41w1n8yAUznJESFjg7x0taF4lDpT0ninyla0zLmO2Nw559VyYv3H+2h2hpP9wEbx9pXRAhnS/M9JRqClNDZvtP9ZPWM7LCpM9mogdshpPZASGzOiHS/QHW6McB2AN0pZkJOZmTjXotF+aK+Em8TIYHelMSGCwBx8KMYW1pZQ/A5L2b/lvf0afuE0S/PlsT9QDg+B49fymztWVLAWhG0OOOn63p1QEgRwTg9GmOWJQ1XcNMfmHRrmSBInqrNYEuMALmaHf2wBm4Ax8QAIJBOIgBSwEH8EAaEIFssBKsA4WgGGwBO0AF2AcOgjpwBBwDLeAMuACugBugB9wBj4AEDIKXYBR8AOMQBOEhKkSDVCAtSB8yhawhJuQK+UBBUCgUA8VBSZAAEkMrofVQMVQKVUAHoHroF+gUdAG6BvVCD6B+aAR6C32BEZgCK8IasAE8F2bCHnAgHA4vgZPgdDgPLoA3weVwFXwYboYvwDfgO7AEfgmPIQAhI3REGzFHmIgXEozEIomICFmNFCFlSBXSiLQhncgtRIK8Qj5jcBgahoExxzhj/DERGA4mHbMaU4KpwNRhmjGXMLcw/ZhRzHcsFauONcU6YVnYaGwSNhtbiC3D1mBPYi9j72AHsR9wOBwdZ4hzwPnjYnDJuBW4EtweXBOuHdeLG8CN4fF4Fbwp3gUfjGfjM/GF+F34w/jz+D78IP4TgUzQIlgTfAmxBAEhn1BGOEQ4R+gjDBHGiXJEfaITMZjIJeYSNxOriW3Em8RB4jhJnmRIciGFk5JJ60jlpEbSZdJj0jsymaxDdiQvJPPJa8nl5KPkq+R+8meKAsWE4kVZTBFTNlFqKe2UB5R3VCrVgOpOjaVmUjdR66kXqU+pn2RoMhYyLBmuzBqZSplmmT6Z17JEWX1ZD9mlsnmyZbLHZW/KvpIjyhnIecmx5VbLVcqdkrsnNyZPk7eSD5ZPky+RPyR/TX5YAa9goOCjwFUoUDiocFFhgIbQdGleNA5tPa2adpk2qIhTNFRkKSYrFiseUexWHFVSULJVilTKUapUOqskoSN0AzqLnkrfTD9Gv0v/MkdjjsechDkb5zTO6ZvzUVlN2V05QblIuUn5jvIXFYaKj0qKylaVFpUnqhhVE9WFqtmqe1Uvq75SU1RzVuOoFakdU3uoDqubqIeqr1A/qN6lPqahqeGnIdTYpXFR45UmXdNdM1lzu+Y5zREtmparFl9ru9Z5rRcMJYYHI5VRzrjEGNVW1/bXFmsf0O7WHtcx1InQyddp0nmiS9Jl6ibqbtft0B3V09Kbr7dSr0HvoT5Rn6nP09+p36n/0cDQIMpgg0GLwbChsiHLMM+wwfCxEdXIzSjdqMrotjHOmGmcYrzHuMcENrEz4ZlUmtw0hU3tTfmme0x7zbBmjmYCsyqze+YUcw/zLPMG834LukWQRb5Fi8XruXpzY+dunds597ulnWWqZbXlIysFqwCrfKs2q7fWJtYc60rr2zZUG1+bNTatNm9sTW0TbPfa3rej2c2322DXYffN3sFeZN9oP+Kg5xDnsNvhHlORGcIsYV51xDp6Oq5xPOP42cneKdPpmNOfzubOKc6HnIfnGc5LmFc9b8BFx4XtcsBF4spwjXPd7ypx03Zju1W5PXPXdee617gPeRh7JHsc9njtaekp8jzp+dHLyWuVV7s34u3nXeTd7aPgE+FT4fPUV8c3ybfBd9TPzm+FX7s/1j/Qf6v/PZYGi8OqZ40GOASsCrgUSAkMC6wIfBZkEiQKapsPzw+Yv23+4wX6CwQLWoJBMCt4W/CTEMOQ9JDTC3ELQxZWLnweahW6MrQzjBa2LOxQ2Idwz/DN4Y8ijCLEER2RspGLI+sjP0Z5R5VGSaLnRq+KvhGjGsOPaY3Fx0bG1sSOLfJZtGPR4GK7xYWL7y4xXJKz5NpS1aWpS88uk13GXnY8DhsXFXco7is7mF3FHotnxe+OH+V4cXZyXnLdudu5IwkuCaUJQ4kuiaWJw0kuSduSRnhuvDLeK74Xv4L/Jtk/eV/yx5TglNqUidSo1KY0Qlpc2imBgiBFcGm55vKc5b1CU2GhUJLulL4jfVQUKKrJgDKWZLRmKqIGp0tsJP5B3J/lmlWZ9Sk7Mvt4jnyOIKcr1yR3Y+5Qnm/ezyswKzgrOlZqr1y3sn+Vx6oDq6HV8as71uiuKVgzuNZvbd060rqUdb/mW+aX5r9fH7W+rUCjYG3BwA9+PzQUyhSKCu9tcN6w70fMj/wfuzfabNy18XsRt+h6sWVxWfHXEk7J9Z+sfir/aWJT4qbuzfab927BbRFsubvVbWtdqXxpXunAtvnbmrczthdtf79j2Y5rZbZl+3aSdop3SsqDylt36e3asutrBa/iTqVnZdNu9d0bd3/cw93Tt9d9b+M+jX3F+77s5++/f8DvQHOVQVXZQdzBrIPPqyOrO39m/lxfo1pTXPOtVlArqQutu1TvUF9/SP3Q5ga4Qdwwcnjx4Z4j3kdaG80bDzTRm4qPgqPioy9+ifvl7rHAYx3HmccbT+if2H2SdrKoGWrObR5t4bVIWmNae08FnOpoc247edridO0Z7TOVZ5XObj5HOldwbuJ83vmxdmH7qwtJFwY6lnU8uhh98falhZe6LwdevnrF98rFTo/O81ddrp655nTt1HXm9ZYb9jeau+y6Tv5q9+vJbvvu5psON1t7HHvaeuf1nutz67twy/vWldus2zfuLLjTezfi7v17i+9J7nPvDz9IffDmYdbD8UdrH2MfFz2Re1L2VP1p1W/GvzVJ7CVn+737u56FPXs0wBl4+XvG718HC55Tn5cNaQ3VD1sPnxnxHel5sejF4Evhy/FXhX/I/7H7tdHrE3+6/9k1Gj06+Eb0ZuJtyTuVd7Xvbd93jIWMPf2Q9mH8Y9EnlU91n5mfO79EfRkaz/6K/1r+zfhb2/fA748n0iYmhGwRe8oKoG4BwImJALytBYAaAwAN9RUkmWlfPBXQtJefIvCfeNo7TwXqXKrbAZi0PUFo3usOgD6aZdcCMGmLwt0BbGMjHf+IjEQb62ktCuousZ8mJt5pAIBvA+CbaGJifM/ExDfUfyMPAGhPn/bjUxZmALW8qKfBv+zZugn8a/wFGucBSaIBuLkAABlLSURBVHgB7Z1bbFVZ/ce/p3doC7TQAoWWDpRbaacw0HY64DBixtHJZGJijHEeNCZGX/XJTKLRRB9M9MHEB2PU6Isa4zz4oCPzHwdhhovchkuBMgItFCiXtpS2lF7P2f/f2ufs03Pa0wvnywxl+l3J7r6s9V177c9e370u+5zT0MOHDz0oiIAIPBECWdOddWRkBA8ePPCX4eFhP2lubi4KCgr8JScnZzr5pLi5nl94dBSZ2dmTyq0DT5ZAJDwKLzMbmU+2GB/L2UNTtYCDg4Po7u7G2NgYsrKy/MWVwO0Hx5YuXYoFCxbMqmBzPb+xBzfwf++fxaqanairKMC9jpvoHfWQGQr515eZvQBLS5chLzOEyGgPPnj3CFY/vwfrivNmdf0fZ6KxwXv46OJl9A+HkL+kBJVr16AwJ1ru2Z7XG+7DjY5uq+jj1TwnvwilSwuRYZkM3WvDvv+24/nPfQbFue7IJxVG0bzvPXRkVmDP7mpkzdlyTubhecPouHIJ1+88QPbCfJRVVmFlUbJfUraArqVy5nNh4cKF/trzoj1V1+q5JUhTWlrq7/uJpvgTpHXRczE/V66MrHyU5Bdi6WJnqAhuXryA60MRF5UQluIzrzQgHx5G7Wgk8uR772MDd7D/wEmMIA8rVxbgequVu7UDuz7fhEVZszfhcP8dNLdcSrjW6GZheQ121la4q7XFXfUnHTKwpLQIw9nFcH2ToVmWc+Kd+6RL7XlDuHDofVzrG0PxypUY6LyBU7eu40H9Z7G+ZNyEKQ3oup2ulXNmccYLzOcuwm2HrFVwJrTW0++eFhcXT3t9cz0/V/iMvCLU7/5M7DpGERnzsK7hs9i4LArrQWcb3j/egpbWHuyojCXLiLYWEbvbGZ9koxA7vTNF+9mzZr4lccNteeYa/n34PC539OG5isXxlDNu+BeQYy3cnlgLN4obLR/ibNsFdFatxiPkNOOpHi1BJsprGlEeiGZVzgz4DbndmIilfxK35uGtVt98G+p3o6rEHtneAE786wCuNLdh7Z7qeHd6SgO6bqcLEw0YcHAmdGmcuWZjwLmcn7sm16089O5RVLzwEtYsGe+GBddbUFKByryP0DXmWoFs/6Y+uHMFB/7bhgE7kplfgvrGbSjOi3Lr7biM46f/Z+ZwIQdVdTuwYdUS2w7j8vGD6FmwHLh7FZ1+K5uH6obnUbks2tsYG+jCqRMn0TkQ9tUr1z+HuvUrJlWkyGgvrvaMonL7Nr+1C4fDyFmyBp/dtQhjOfm+dvRBJ06f/HA8r2eeRc3m1X5r4ieY8k82ytauw8W2Y7g/MIzFCbU42gU/i9qE7mjnpWO4HK5E06ZSpH/OVIUJ48qJ99G9uAYN60tSJEhVzhFcPX8CR252+emXVtRg65Zy5Fqddd3C9vNncb69049z9237jq1Ylp/t14Ej+y9gtV1DS/Mlv83PXVyBhvotfpc+qj1t2mjvMDEuuWBh3Gi9gaxF633zRey+WAXBc5/bjfs25+n3SyKDaG0+M+me+vm4CRdnmIkt38R9lyaYnEkuQPLeXM8vWloPw4Z8xFq+eIi1cG7f88YwanFeONq5cRa91XYTa7Y/j52NdVg40IkTJ9rMXtZN6rqCQ2a+wopN2LV7F7ZUFOLymcO40PHAYu0cD4fQ2d6KvHXPYdfOBpTlj+LCsfMYdOcJ9+PYgWPoyVyOHU07saN2LW5d+hAnreWdHKJlHb5/FfvefhvvvPMO3n57L671AoX+g2AUl8x897ASu17ag6Y6y6vtLK52DU3OKnYklGA0jI34D5DEQ9FkrgtuvYSEXMKjltZn9+jnTMgmxWYED/uGMTSWeDZg+nJGcPd+Dhp27cJzm8vR3X4OrbFr7jh7xDdQVV2Dsa9HcbjbeB/GvWGXv9UBe6idb+5AbeNOPL99E7zedpy5fMcvV1Tbj01bG7GraRtyLO7QwWYMx4Zn44W3ezwSQU7+GJqPvIu9dl/22v05cv6mjdHzfdP13vgfLt58iJQt4HhG83crw8ZPvZ230Dm2wEwxitvXPsJNq2Aby1wrNugbrXJ7EyqXR1ua6qp2HLv6EGN2M7pvXrcubTl21Kz1uxqLanZgoPvfuNvZi+qyUoTDHnJX1KB2TakPeEtdFToOW0tqlSA0cBf37ejWZzfbU9luT9E6bLpx3bqUdxFeWxTvujjhSH8vnJVuXbmGDVYpVtuE0N22FpxrPmKN7m5sLM3CqKtYuVZhMzOweNUmvLpqgxlnsqVcfjbFhq7bdzFqkyxjw724ZK0ArHu7osjGxWbq2QTPi8z6nOGRAdzvH7LuuytPBF5GHpYsjlbQiefKSKrkM5UzB/UvPIvibMt3UTXK7UHZ2dWHjUuG8JFVejfRtmFVtFO9fecO7HvvGLr7h+3c0bOua2jEqqVuLmCxPTyv42znPQyP5fnaZevrUWl1wItkom5rDw6e7kD/iN3P3OTxdlZOBh7eakNOZTV2b1uBkXsdOHn6Ig6eyMKe+rUYtuGbCykN6F41uDGgG+cFrZ7rciYGtz9q0/Yu7UxhrueXqvwhm+3sunIevfZaYnQ0jAU2I1jb2ITy4gXWVRn0n/7ZCTOG+cXL4F0esO7FCLruDKJgdUmCWTKxfOUiXL3ciaHaZf7pcvPGX+HEGtUkW5w++F5SsTLyRnxzB7OyLjInf7FNvVg12dSIqrIiP33F5jr0XP837nT2YdPyldiwvQa9J8/hg/du+PHFK6tQW7se+SknaCJmutPIzs70z1W08hlsq96EQmORqs30fePnamPg2DoUyp31Obtbz+JEQsseylqFPS8/63cVY9lNsZpFOeMNZnTDN7BNmrm9goLxOhvKynHPp3hw8RnWEgYh0+Ijw6MImx9c6Lp0HHuT5qry4tceaNx6zFrAUNYKbN+8xr+e/LK12D7UjSMXb2Mg/AxK1tagvOdkagO693x9fX2+AScaz2UeHHMmXbRokTs0bZjr+aUqfNhajnUNe2wSxlXxqcL4jQrugquApWULcev2PYSrV8RMGEHX3X5kFy1HTmKtTZlttArU7/k8SvJi1ToSxqgXQvaEh2BwzpTZxA4uWFqOFz9fjvDIMB7238XRo804lbsIu6xsk4NNwrxskzCu5ZgxjOChMQrSPugdRMh1DizM9pylm5rw6qao5tH+Pko5x3MO2ZDJmW1wMGomF+NFxmzo4drfqYIbVGQgyx7Ebha2tO5F1KwqiCW21t69qprEKxOFhTaEiw4zJ2Qc9u0dyilEbdNLqW+hM4wb37nXB85srovg1onbLs6lcWlnCnM9v6nLn2CwqRNNiiksXorI0FWcv3wLg8ODuGPdwis2Hb1q7fLUwBNyyMlfaq1aBKdPtaBvaASDfbdxYO87eP9MtAVLSIoMm5qvWbcMdy6exFXr3o6MDKHj0jm/q1xSUmhd5z4csLHH/lOtGM3IspYtOnm0cGHiMz8xR6uIU9dEP2E02uqE7V27fB0DQ0PW5bbxjE0GZVk3MZ1zJpdgdnuzK2dyXiGbCFlZlI32M8dwvbsPgwM9aLHJLvcKp6RwaibOnqHMgpj2JDp6BjAyPIBLJw7g3XcP44ENKZJDBlZtdE+W22i+fBND5pW+zqs4ebETOSXlWGQ9ivYP37Px+gepW0DX9XQv2d27QPeqwRnNLS64bmfii3iXdqYw1/MLyu8qVUZGtKs9fRsQrYBB2kAfinXrCsqq0WhPxqPnT8HG2n4o31xvXUI3XrRP29gNSAwZmY5t9IwZucXYuXMrDh06jYP7rvnJ8optJu7Z8kRJfLt04zZsHjiCC8cP4ULsaPRcBf5s2zYbXx4+cxH7bl30Y/NL1mLj6lhTFc8l2Jhpyj4XOXaNGZlFqNuyxq6vBQc6WqyrVeyPP/ssm1DmIjzaOYNzT73OnsDLsZr+/kTLOTnHTFQ17sLIsSNoPnowFp2PrTsb/VcvEZvgTqwD0QSZdn2u7cu0HtELGDl+FKePHIhrn22q9w0VOxBfZS9ajRe3D+L9k2exL9ZlzSuuROO2NX6aMhsqdNw/gSk/CeNSuVZuPn0ULU7vcW3YYzrsJg9CmbA5kEcO7qNxEZuJzZ6FeMRa2oh1UzOz8yz9xFNZOWwca84x86dRkInZBfuua2wDWPfxvcm5fkznDM5Nrt2rAdduhWwcP7ns02futG7c7sbKM4Ww9UpG7L7Ym0mbL4k2YomaaQ2YmFDbIiACj5/Ao5r/8ZdAOYrAPCYgA87jm69Lf/IEZMAnfw9UgnlMIOvSpaS3ivMYhS5dBD55AiH7pMvElxiffCl0RhGYpwTUBZ2nN16XPTcIyIBz4z6oFPOUgAw4T2+8LntuEJAB58Z9UCnmKYFJn43JtI/muG9WB+FPf/pTsBlff/GLX5z0Lfg//vGPqK6uRkNDg5/u+PHjOHfuHL75zW/Gdak2mpqa8Pe//x3Ll9s3xNMIP/zhD/GHP/wBAwMDePnll/Hb3/4Wixc/uR9QSOMSJHmMBDo6OvDiiy/OKsejR4/6n3kOErsvHURm+pR3kPgxrVPOgiYWxH3wemIIPpjtjv/1r3/1ow8cOIDVq1dj3bp1/n5rayva29vx0ksv+ftf/epX/XXwVSZ/Z5o/003O3rlzB2VlZVPCcuf4+te/DvdQUJhfBNzX6H71q18lXbR7SP/kJz9JOuZ2vvvd7yI/P/qFatfwOPNNVz8Tzel+L2nIvgnigmuQ/vnPf/rbqf50dnZixYoV8e/W/uc//8Hu3bujSd1rCCbYB7Y9+8mJGZeJ5/jd737nuSUIdXV13v3794PdKddVVVXutYm/TJXIWsIZ00yl1fFPHwEz1bQX9frrr/v1xUzkueUvf/lL0n5wPMjE5efqoBnQa2lp8bffeOONINp766234ttuw6V97bXX/GPf+c53/P0ggXPllCE4UVDhE9eByKVpbm6ednG6IEyXZ6r8A12wvnHjhvf73/8+2PX27t3rVVZWevbFYO/73/9+/LjbqKioSNrXzvwkENQ5+yrdJADORK7eWesWj+vq6koySTwitpFYn92h733ve0npXfyXvvQlP7V9pc+zljamjK5c/KlTp/ydcWfEkrjIiSf4xS9+4bW1tcVSJK/cxbkQXGSgD9YuLjG/IL07vmXLFv/C7Ud7vQ0bNrhDfkhMHxybuP7ggw/8fIPzJK5lvIm05ve+q3PW7YvXl4k0nAkTw2wM6OpsEL7xjW8k1fH+/v4gatL6lVdeSUo7yYBO8bWvfS0mdNEwc0XXbtt+AtQ/5rYTl8Q0wfHpjrmfm/n2t8fzOHQoMP74Osgn1frXv7bf8LEf75gY9+abs9NP1D0N+5Ov9mko9Rwoo+syBjXlC1+IGrG2dvxYrNFJfIin3A7ycPmZ5mc/+5n3rW99y7M5kSRTWbJJ4c0334ye13SuGxoEV65JIdGAp0/D+/nP48X37BcoLP3kxZktVaEnpnXpbLzq3b4N7403kpdbt+DdvPnoBtqzJ/pgsLmZlGWbWIandf/TfXUf411JNOBsakisCzot7927/fr+wgsv+P5xdX+2wbXI9rbAT55yFtQGlPjzn/9sedo3ee1NoZkFv/kN8NOfum/Jw35VC7AfZI6HH/wgvplyw+mC4PILZnobG2E/EhSNqasDzpyJbptJ7WoCxfTrr3wFeOut8TSz1Y0rnp6t6DPu6SnvnClpYqWbTaHcv2VYZr9eN1VlcjOe9qrDKyz0c3OvPWxI5PvVHTCD4Uc/+hF+/OMfw8aH+OUvfxmPc/HuLYO5L3oslWtrrXmODljh2Wy+949/xNP7OteKxfT+2vJM2k+Mm5g2cX/bNniu1XPL5s3jeUyXX2LewXZ9/aO3moH2aVqPE3qaSj0Hyvq4W8BYF/Rvf/ub9+Uvf9lvCRNn9F0L19PTY56IBlef8/LyvMOHD3vr16/30+/bt8+PdPc0KRQVFXn79+/3BfaKz+JmXtwJ7LebUi6JhnN5Je4fOwYvcQnO9agGDHSf9vXMd+LTTiDN63vcBnSuCMaSVvftF8mTPJRqx5nS1Wu32HvseJJJn4Rx/+fBvSR0/07swoUQXn0VOH/efm7d3jnaIasDloWF/v7oOvh7LfoDXsHurNbWciWFPPsJTvdvCPfvTzqsHRGYewT+9S/fTbMtWOJL/ERNyjHgeAIbjCnMGQIaA86ZW+EXJNYWUYXSh7EpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEdABuT4SS0CFAEZkMInsQhwBGRAjp/UIkARkAEpfBKLAEcgazp5CN500YoTAREgCagFJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBCQARl60ooASUAGJAFKLgIMARmQoSetCJAEZEASoOQiwBDImk7sTRepOBEQAZqAWkAaoTIQgfQJyIDps5NSBGgCMiCNUBmIQPoEZMD02UkpAjQBGZBGqAxEIH0CMmD67KQUAZqADEgjVAYikD4BGTB9dlKKAE1ABqQRKgMRSJ+ADJg+OylFgCYgA9IIlYEIpE9ABkyfnZQiQBOQAWmEykAE0icgA6bPTkoRoAnIgDRCZSAC6ROQAdNnJ6UI0ARkQBqhMhCB9AnIgOmzk1IEaAIyII1QGYhA+gRkwPTZSSkCNAEZkEaoDEQgfQIyYPrspBQBmoAMSCNUBiKQPgEZMH12UooATUAGpBEqAxFIn4AMmD47KUWAJiAD0giVgQikT+D/AZchNYrdsz77AAAAAElFTkSuQmCC" alt="" />
frame和bounds的区别的更多相关文章
- IOS 中frame与bounds的区别
文章摘要:http://www.sendong.com/news1733.html bounds是指这个view在它自己坐标系的坐标和大小 而frame指的是这个view在它superview的坐标系 ...
- 深入探究frame和bounds的区别以及setbounds使用
[转自]http://blog.csdn.net/hherima/article/details/39501857 在iOS开发中经常遇到两个词Frame和bounds,本文主要阐述Frame和bou ...
- iOS View的Frame和bounds之区别,setbounds使用(深入探究)
前言: 在ios开发中经常遇到两个词Frame和bounds,本文主要阐述Frame和bound的区别,尤其是bound很绕,较难理解. 一.首先,看一下公认的资料: 先看到下面的代码你肯定就明白了一 ...
- iOS开发中frame与bounds的区别
闲话不多说,先上两张图,大伙们就已经明白了: 显示出来的效果是这样子滴: 总结: 要理清这两者的区别,最主要的要理解一下几个概念:frame可以理解为可视的范围,而bounds可以理解为可视范围内的 ...
- frame与bounds的区别比较
翻译文档上的 bounds是指这个view在它自己坐标系的坐标和大小 而frame指的是这个view在它superview的坐标系的坐标和大小 区别主要在坐标系这一块. 很明显一个是自己为原点的坐标 ...
- ios基础之 view的frame 与 bounds 的区别 (转)
前言: 学习ios开发有一段时间了,项目也做了两个了,今天看视频,突然发现view的frame和bound两个属性,发现bound怎么也想不明白,好像饶你了死胡同里,经过一番尝试和思考,终于弄明白bo ...
- ios view的frame和bounds之区别(位置和大小)
前言: 学习ios开发有一段时间了,项目也做了两个了,今天看视频,突然发现view的frame和bound两个属性,发现bound怎么也想不明白,好像饶你了死胡同里,经过一番尝试和思考,终于弄明白bo ...
- iOS开发 frame 与 bounds 的区别与关系 转自隔叶黄莺
frame和bounds是UIView中的两个属性(property). frame指的是:该view在父view坐标系统中的位置和大小.(参照点是父亲的坐标系统) bounds指的是:该view在本 ...
- frame和bounds的区别与联系
首先先看一下下面两个属性的代码实现: -(CGRect)frame{ return CGRectMake(self.frame.origin.x,self.frame.origin.y,self.fr ...
- frame与bounds的区别
原来你M,frame.size和bounds.size不总是一样的 在UIViewController的- (void)willAnimateRotationToInterfaceOrientatio ...
随机推荐
- DIV+CSS解决IE6,IE7,IE8,FF兼容问题(转至http://www.douban.com/note/163291324/)
2011-07-25 21:11:47 DIV+CSS解决IE6,IE7,IE8,FF兼容问题 1.IE8下兼容问题,这个最好处理,转化成IE7兼容就可以.在头部加如下一段代码,然后只要在IE ...
- Microsoft SQL Server 数据库 错误号大全
panchzh :Microsoft SQL Server 数据库 错误号大全0 操作成功完成. 1 功能错误. 2 系统找不到指定的文件. 3 系统找不到指定的路径. 4 系统无法打开文件. 5 拒 ...
- ExtJS001HelloWorld弹窗
html页面 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- BZOJ 1012 最大数maxnumber
Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度. 2. ...
- 简单的mvvm light 应用
public class MainStudentModel:ViewModelBase { //实体 private StudentModel stu = new Stude ...
- [LeetCode]题解(python):080-Remove Duplicates from Sorted Array II
题目来源: https://leetcode.com/problems/remove-duplicates-from-sorted-array-ii/ 题意分析: 跟定一个排好序的数组.修改这个数组使 ...
- NET Core,Ubuntu运行
NET Core,如何开发跨平台的应用并部署至Ubuntu运行 之前写了一篇博文宣布Rabbit Rpc跨平台了“拥抱.NET Core,跨平台的轻量级RPC:Rabbit.Rpc”,在过程中尝试了如 ...
- 对程序员的不尊重是中国it产业的悲哀。
电脑刚进入中国时,“程序员”三个字是一份令人尊敬的岗位,那个时候中国互联网人才奇缺.程序员的价格也就水涨船高.小的时候电视里到处播放着电脑培训学院的招生广告.一说到程序员,给我们的印象都是白领,高薪的 ...
- 用git上传项目到github
1 git clone github仓库地址 2 git add . 3 git commit -m "changes log" 4 git remote add origi ...
- poj 2593 Max Sequence(线性dp)
题目链接:http://poj.org/problem?id=2593 思路分析:该问题为求给定由N个整数组成的序列,要求确定序列A的2个不相交子段,使这m个子段的最大连续子段和的和最大. 该问题与p ...