P1371 NOI元丹

    • 71通过
    • 394提交
  • 题目提供者洛谷OnlineJudge
  • 标签云端评测
  • 难度普及/提高-

提交  讨论  题解

最新讨论

  • 我觉得不需要讨论O
  • long long 不够
  • 没有取模

题目描述

小A打算开始炼NOI元丹(什么鬼),据说吃了可以提高NOI时的成绩。

是这么练的。元丹有三种元核,'N','O','I'。现有很多个这样原核,按顺序排成一行。炼元丹时,从左往右分别挑出'N','O','I'三个原核吞下。

现在他关心,有几种服用方式……且慢!

他觉得服用方式太少,以至于不能成仙。所以他可以通过某个途径,得到'N','O','I'的三种原核中的任意一个,至于哪一种由他决定。然后他将获得这个原核的插入到这一排原核中的任意位置(包括最前最后)。

现在你要知道,新的元核序列中能有多少种'N','O','I'的取出方式。子串的字母并不要求连续。

输入输出格式

输入格式:

第一行,一个整数N,表示字符串的长度。

第二行,一行字符串,里面只有只有'N','O','I'三种字母。

输出格式:

表示出最多可以提炼出来的NOI元丹的方案种数。

输入输出样例

输入样例#1:

5
NOIOI
输出样例#1:

6

说明

样例解释

他可以获取一个N元核,加到最前面。

NNOIOI | NNOIOI | NNOIOI | NNOIOI | NNOIOI | NNOIOI
~ ~~ | ~ ~ ~ | ~ ~~ | ~~~ | ~~ ~ | ~ ~~

30%的数据N<=200

50%的数据N<=2000

100%的数据3<=N<=100000

分析:求方案数,很显然是dp,如果没有插入原核,非常简单,设f[i][j]为字符串前i个字符匹配NOI的第j个字符,显然可以用第i个字符去匹配第j个字符也可以用第i个字符之前的字符去匹配第j个字符,那么f[i][j] = f[i-1][j] + f[i-1][j-1],这种方法比较麻烦,还有一种方法,一个一维数组即可解决问题.

如果要匹配“NO”,如果给定的字符串是“NNOOO”,当我们匹配到第3个字符的时候已经有2种方案了,到第4个字符的时候就有4种方案了,到第5个字符的时候就有5种方案了,每一次都加N的个数,类比到本题,如果出现"N",f[1]++,出现“O”,f[2]+=f[1],出现“I”,f[3]+=f[2],答案就是f[3].

解决完化简后的问题之后,考虑本题,要插入一个原核,一定要是最优插入,那么可以想到N一定插入到最左边,I在最右边,O在中间,前两种情况很好弄,O的情况有点麻烦,记录i位置左边N的个数和右边I的个数,当乘积最大时,在i位置插入O是最优的,这里可以用两个数组维护,因为涉及到多次这种数据的处理,所以先预处理出这两个数组中的数据.

涉及到很多字符串拼凑,所以建议用string.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string> using namespace std; long long n, f[], ans,leftt[],rightt[]; string s; long long dp(string ss)
{
memset(f, , sizeof(f));
for (int i = ; i <= n; i++)
{
if (ss[i] == 'N')
f[]++;
if (ss[i] == 'O')
f[] += f[];
if (ss[i] == 'I')
f[] += f[];
}
return f[];
} string form(int x)
{
string a;
for (int i = ; i < x; i++)
a += s[i];
a += 'O';
for (int i = x; i < n; i++)
a += s[i];
return a;
} int main()
{
scanf("%lld", &n);
cin >> s;
string temp;
temp = 'N' + s;
ans = max(dp(temp), ans);
temp = s + 'I';
ans = max(dp(temp), ans);
for (int i = ; i < n; i++)
{
leftt[i] = leftt[i - ];
if (s[i] == 'N')
leftt[i]++;
}
for (int i = n - ; i; i--)
{
rightt[i] = rightt[i + ];
if (s[i] == 'I')
rightt[i]++;
}
long long t = ,cur = ;
for (int i = ; i < n; i++)
{
if (t < leftt[i] * rightt[i])
{
t = leftt[i] * rightt[i];
cur = i;
}
}
temp = form(cur);
ans = max(dp(temp), ans);
printf("%lld\n", ans); //while (1);
return ;
}

洛谷P1371 NOI元丹的更多相关文章

  1. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

  2. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

  3. P1371 NOI元丹

    luogu月赛的题 本来想爆搜,但是经过ly大佬的点拨,明白这是一个dp. 我们定义dp[n]为从n开始的可行串的数目,具体如下:如果n为'I',则是从n开始有多少个I,如果n为'O',既是从n开始有 ...

  4. 洛谷-跑步-NOI导刊2010提高

    新牛到部队, CG 要求它们每天早上搞晨跑,从A农场跑到B农场.从A农场到B农场中有n-2个路口,分别标上号,A农场为1号, B农场为n号,路口分别为 2 ..n -1 号,从A农场到B农场有很多条路 ...

  5. 洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)

    题面传送门 题意: 求有多少个数列 \(x\) 满足: \(\sum x_i=n\) \(x_i\geq x_{i+1}\) 答案对 \(p\) 取模. ...你确定这叫"入门"组 ...

  6. 洛谷 P6478 - [NOI Online #2 提高组] 游戏(二项式反演+树形 dp)

    题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥 ...

  7. 洛谷10月月赛Round.3

    Rank11:260=60+100+100 P2409 Y的积木 题目背景 Y是个大建筑师,他总能用最简单的积木拼出最有创意的造型. 题目描述 Y手上有n盒积木,每个积木有个重量.现在他想从每盒积木中 ...

  8. [洛谷]P3613 睡觉困难综合征

    题目大意:给出一棵n个点的树,每个点有一个运算符(与.或.异或)和一个数,支持两种操作,第一种修改一个点的运算符和数,第二种给出x,y,z,询问若有一个0~z之间的数从点x走到点y(简单路径),并且对 ...

  9. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

随机推荐

  1. sql join,left join,rigt join

    left join :左连接,返回左表中所有的记录以及右表中连接字段相等的记录.right join :右连接,返回右表中所有的记录以及左表中连接字段相等的记录.inner join: 内连接,又叫等 ...

  2. System.DateUtils 4. IsValidDateTime... 有效时间判断

    编译版本:Delphi XE7 function IsValidDate(const AYear, AMonth, ADay: Word): Boolean;function IsValidTime( ...

  3. hdu1260 dp

    题意:有 k 个人需要买电影票,a[i] 表示第 i 个人单独买票要花费的时间,b[i] 表示第 i-1 个和第 i 个人一起买票需要花费的时间,问卖给所有人各一张票最少需要到什么时候. dp[i]表 ...

  4. USACO 2015 December Contest, Gold Problem 2. Fruit Feast

    Problem 2. Fruit Feast 很简单的智商题(因为碰巧脑出来了所以简单一,一 原题: Bessie has broken into Farmer John's house again! ...

  5. 【OpenGL】VAO与VBO

    1.我们先了解什么是OpenGL对象(OpenGL Object) 根据OpenGL Wiki的定义: An OpenGL Object is an OpenGL construct that con ...

  6. WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED解决方法

    @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    WARNING: REMOTE HOST IDENTIFICATION ...

  7. mybatis实战教程(mybatis in action)之九:mybatis 代码生成工具的使用

    mybatis 应用程序,需要大量的配置文件,对于一个成百上千的数据库表来说,完全手工配置,这是一个很恐怖的工作量. 所以mybatis 官方也推出了一个mybatis代码生成工具的jar包. 今天花 ...

  8. undefined reference to `_init'问题解决

    今天利用CDT 的eclipse调试程序,遇到下面的问题: d:/plugin/bin/../lib/gcc/arm-none-eabi/4.8.4/../../../../arm-none-eabi ...

  9. IntentService

    http://developer.android.com/training/run-background-service/index.html IntentService 只是简单的对Service做 ...

  10. xampp出现 Access forbidden! 问题解决

    解决 XAMPP 出现 A今天安装了XAMPP 试了下,增加虚拟主机时出现没权限,apache配置文件httpd.conf的allow属性,把下图中的文字注释掉: 然后公开于外网出现以下错误,也很容易 ...