java内存模型-final
与前面介绍的锁和 volatile 相比较,对 final 域的读和写更像是普通的变量访问。对于final 域,编译器和处理器要遵守两个重排序规则:
- 在构造函数内对一个 final 域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
- 初次读一个包含 final 域的对象的引用,与随后初次读这个 final 域,这两个操作之间不能重排序。
下面,我们通过一些示例性的代码来分别说明这两个规则:
public class FinalExample {
int i; //普通变量
final int j; //final变量
static FinalExample obj; public void FinalExample () { //构造函数
i = 1; //写普通域
j = 2; //写final域
} public static void writer () { //写线程A执行
obj = new FinalExample ();
} public static void reader () { //读线程B执行
FinalExample object = obj; //读对象引用
int a = object.i; //读普通域
int b = object.j; //读final域
}
}
这里假设一个线程 A 执行 writer() 方法,随后另一个线程 B 执行 reader() 方法。下面我们通过这两个线程的交互来说明这两个规则。
写 final 域的重排序规则
写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外。这个规则的实现包含下面2个方面:
- JMM 禁止编译器把 final 域的写重排序到构造函数之外。
- 编译器会在 final 域的写之后,构造函数 return 之前,插入一个 StoreStore 屏障。这个屏障禁止处理器把 final 域的写重排序到构造函数之外。
现在让我们分析 writer() 方法。writer() 方法只包含一行代码:finalExample = new FinalExample()。这行代码包含两个步骤:
- 构造一个 FinalExample 类型的对象;
- 把这个对象的引用赋值给引用变量 obj。
假设线程 B 读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:
在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误的读取了普通变量i初始化之前的值。而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程 B 正确的读取了 final 变量初始化之后的值。
写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程 B “看到”对象引用 obj 时,很可能 obj 对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值2还没有写入普通域i)。
读 final 域的重排序规则
读 final 域的重排序规则如下:
- 在一个线程中,初次读对象引用与初次读该对象包含的 final 域,JMM 禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读 final 域操作的前面插入一个 LoadLoad 屏障。
初次读对象引用与初次读该对象包含的 final 域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如 alpha 处理器),这个规则就是专门用来针对这种处理器。
reader() 方法包含三个操作:
- 初次读引用变量 obj;
- 初次读引用变量 obj 指向对象的普通域 j。
- 初次读引用变量 obj 指向对象的 final 域 i。
现在我们假设写线程 A 没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:
在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程A写入,这是一个错误的读取操作。而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被 A 线程初始化过了,这是一个正确的读取操作。
读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。在这个示例程序中,如果该引用不为 null,那么引用对象的 final 域一定已经被 A 线程初始化过了。
如果 final 域是引用类型
上面我们看到的 final 域是基础数据类型,下面让我们看看如果 final 域是引用类型,将会有什么效果?
请看下列示例代码:
public class FinalReferenceExample {
final int[] intArray; //final是引用类型
static FinalReferenceExample obj; public FinalReferenceExample () { //构造函数
intArray = new int[1]; //
intArray[0] = 1; //
} public static void writerOne () { //写线程A执行
obj = new FinalReferenceExample (); //
} public static void writerTwo () { //写线程B执行
obj.intArray[0] = 2; //
} public static void reader () { //读线程C执行
if (obj != null) { //
int temp1 = obj.intArray[0]; //
}
}
}
这里 final 域为一个引用类型,它引用一个 int 型的数组对象。对于引用类型,写 final 域的重排序规则对编译器和处理器增加了如下约束:
- 在构造函数内对一个 final 引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
对上面的示例程序,我们假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行 writerTwo() 方法,执行完后线程 C 执行 reader() 方法。下面是一种可能的线程执行时序:
在上图中,1 是对 final 域的写入,2 是对这个 final 域引用的对象的成员域的写入,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM 可以确保读线程 C 至少能看到写线程 A 在构造函数中对 final 引用对象的成员域的写入。即 C 至少能看到数组下标 0 的值为 1。而写线程 B 对数组元素的写入,读线程 C 可能看的到,也可能看不到。JMM 不保证线程 B 的写入对读线程 C 可见,因为写线程 B 和读线程 C 之间存在数据竞争,此时的执行结果不可预知。
如果想要确保读线程 C 看到写线程 B 对数组元素的写入,写线程 B 和读线程 C 之间需要使用同步原语(lock 或 volatile)来确保内存可见性。
为什么 final 引用不能从构造函数内“逸出”
前面我们提到过,写 final 域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的 final 域已经在构造函数中被正确初始化过了。其实要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程可见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面示例代码:
public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj; public FinalReferenceEscapeExample () {
i = 1; //1写final域
obj = this; //2 this引用在此“逸出”
} public static void writer() {
new FinalReferenceEscapeExample ();
} public static void reader {
if (obj != null) { //
int temp = obj.i; //
}
}
}
假设一个线程 A 执行 writer() 方法,另一个线程 B 执行 reader() 方法。这里的操作2使得对象还未完成构造前就为线程 B 可见。即使这里的操作 2 是构造函数的最后一步,且即使在程序中操作 2 排在操作 1 后面,执行 read() 方法的线程仍然可能无法看到 final 域被初始化后的值,因为这里的操作 1 和操作 2 之间可能被重排序。实际的执行时序可能如下图所示:
从上图我们可以看出:在构造函数返回前,被构造对象的引用不能为其他线程可见,因为此时的 final 域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到 final 域正确初始化之后的值。
final 语义在处理器中的实现
现在我们以 x86 处理器为例,说明 final 语义在处理器中的具体实现。
上面我们提到,写 final 域的重排序规则会要求译编器在 final 域的写之后,构造函数return 之前,插入一个 StoreStore 障屏。读 final 域的重排序规则要求编译器在读 final 域的操作前面插入一个 LoadLoad 屏障。
由于 x86 处理器不会对写-写操作做重排序,所以在 x86 处理器中,写 final 域需要的 StoreStore 障屏会被省略掉。同样,由于 x86 处理器不会对存在间接依赖关系的操作做重排序,所以在 x86 处理器中,读 final 域需要的 LoadLoad 屏障也会被省略掉。也就是说在 x86 处理器中,final 域的读/写不会插入任何内存屏障!
JSR-133 为什么要增强 final 的语义
在旧的 Java 内存模型中 ,最严重的一个缺陷就是线程可能看到 final 域的值会改变。比如,一个线程当前看到一个整形 final 域的值为 0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个 final 域的值时,却发现值变为了 1(被某个线程初始化之后的值)。最常见的例子就是在旧的 Java 内存模型中,String 的值可能会改变(参考文献 2 中有一个具体的例子,感兴趣的读者可以自行参考,这里就不赘述了)。
为了修补这个漏洞,JSR-133 专家组增强了 final 的语义。通过为 final 域增加写和读重排序规则,可以为 java 程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指 lock 和 volatile 的使用),就可以保证任意线程都能看到这个 final 域在构造函数中被初始化之后的值。
java内存模型-final的更多相关文章
- Java内存模型-final域的内存语义--没明白,预留以后继续理解
https://www.cnblogs.com/yuanfy008/p/9349275.html 来自 Java并发编程(1)-Java内存模型
- Java内存模型-final域的内存语义
一 引言 说到final你肯定知道它是Java中的关键字,那么它所在Java中的作用你知道吗?不知道的话,请前往这篇了解下https://www.cnblogs.com/yuanfy008/p/802 ...
- Java并发编程(1)-Java内存模型
本文主要是学习Java内存模型的笔记以及加上自己的一些案例分享,如有错误之处请指出. 一 Java内存模型的基础 1.并发编程模型的两个问题 在并发编程中,需要了解并会处理这两个关键问题: 1.1.线 ...
- 深入理解Java内存模型(六)——final
与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象 ...
- 【转】深入理解Java内存模型(六)——final
与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象 ...
- 深入理解JMM(Java内存模型) --(六)final
与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象 ...
- Java内存模型(三)原子性、内存可见性、重排序、顺序一致性、volatile、锁、final
一.原子性 原子性操作指相应的操作是单一不可分割的操作.例如,对int变量count执行count++d操作就不是原子性操作.因为count++实际上可以分解为3个操作:(1)读取变量co ...
- Java内存模型(MESI、内存屏障、volatile和锁及final内存语义)
JMM (Java内存模型) Java线程的实现 实现线程主要有三种方式,Java线程从JDK1.3后采用第一种方式实现: 使用内核线程实现(1:1实现) 使用用户线程实现(1:N实现) 使用用户线程 ...
- JVM学习(3)——总结Java内存模型
俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: 为什么学习Java的内存模式 缓存一致性问题 什么是内存模型 JMM(Java Memory Model)简 ...
随机推荐
- KnockoutJS 3.X API 第五章 高级应用(1) 创建自定义绑定
您不仅限于使用内置的绑定,如click,value绑定等,您可以创建自己的绑定. 这是如何控制视图模型如何与DOM元素进行交互,并且为您提供了大量的灵活性,以便于以复用的方式封装复杂的行为. 注册绑定 ...
- -bash: /usr/local/bin/react-native: No such file or directory
执行react-native run-android/run-ios的时候出现 -bash: /usr/local/bin/react-native: No such file or director ...
- Android入门(十五)通知
原文链接:http://www.orlion.ga/663/ 1.通知的基本用法 创建通知的步骤,首先需要一个NotificationManager来对通知进行管理,可以调用Context的getSy ...
- android NDK 生成so 文件流程-ecplice
1:生成jni目录 首先说一句网上,大部分博客这么写的:打开控制台,进入项目目录,运行javah -classpath bin/classes -d jni com.example.hellojni. ...
- javase基础复习攻略《一》
作为一名软件工程专业,JAVA开发方向的大三本科学生,有必要把自己的学到的专业知识进行一下整理,一则方便自己了解自己的学习程度,二则帮助刚刚接触这一门语言的童鞋了解学习,本人来自与河南理工大学,介绍完 ...
- 哈夫曼树(一)之 C语言详解
本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...
- Web 开发人员和设计师必读文章推荐【系列三十】
<Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- 学习制作精美 CSS3 按钮效果的10个优秀教程
由于互联网世界正在发生变化,人们往往喜欢那些有更多互动元素的网站,因此现在很多 Web 开发人员也在专注于提高他们的 CSS3 技能,因为 CSS3 技能可以帮助他们在很大的程度上实现所需的吸引力.这 ...
- JavaScript最佳实践
作者:Grey 原文地址: http://www.cnblogs.com/greyzeng/p/5540469.html 举个例子:用户在点击某个链接的时候弹出一个新窗口 弹出窗口的方法采用:wind ...
- MySQL 函数大全
mysql函数大全 对于针对字符串位置的操作,第一个位置被标记为1. ASCII(str) 返回字符串str的最左面字符的ASCII代码值.如果str是空字符串,返回0.如果str是NULL,返回NU ...