• 以下为个人翻译方便理解
  • 编辑距离问题是一个经典的动态规划问题。首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离)。
  • 状态转换方程有两种情况:边界情况和一般情况,以上表示中 i和j均从1开始(注释:即至少一个字符的字符串向一个字符的字符串转换,0字符到0字符转换编辑距离自然为0)
  • 1.边界情况:将一个字符串转化为空串,很容易看出把word[0...i-1]转化成空串“”至少需要i次操作(注释:i次删除),则其编辑距离为i,即:dp[i][0] = i;dp[0][j] = j.
  • 2.一般情况:转化非空字符串word1[0..i - 1] 为另一非空字符串 word2[0..j - 1],此处问题转化为几个个子问题:假定已知word1[0..i - 2] 到 word2[0..j - 2]的编辑距离, 即dp[i - 1][j - 1],只需考虑word[i - 1] 和 word2[j - 1]

    - 如果 word[i - 1] == word2[j - 1],无需操作即可满足word1[0..i - 1] 与 word2[0..j - 1]相同,则编辑距离dp[i][j] = dp[i - 1][j - 1]

    - 如果 word[i - 1] != word2[j - 1],分为三种子情况:

    - 用 word2[j - 1]替换word1[i - 1],则有 (dp[i][j] = dp[i - 1][j - 1] + 1 (一次操作用于替换));

    - 删除 word1[i - 1] 使得 word1[0..i - 2] = word2[0..j - 1],则有(dp[i][j] = dp[i - 1][j] + 1 (一次操作用于删除));

    - 在word1[0..i - 1] 中插入 word2[j - 1] 使得 word1[0..i - 1] + word2[j - 1] = word2[0..j - 1] ,则有(dp[i][j] = dp[i][j - 1] + 1 (一次操作用于插入)).

    为了保证理解插入和删除带来的细微差别,对于删除,其实是将word1[0..i - 2] 转化成 word2[0..j - 1], 编辑距离是 dp[i - 1][j],之后直接删除word1[i - 1],一次操作,插入也是类似

    (注释:就是由word1[0..i - 2] 编辑转化成 word2[0..j - 1],删除word1[i - 1]两个操作共同完成实现将word1[0..i - 1] 转化成 word2[0..j - 1])

  • 合并规如下:
    • dp[i][0] = i;
    • dp[0][j] = j;
    • dp[i][j] = dp[i - 1][j - 1], if word1[i - 1] = word2[j - 1];
    • dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
  • 转化为代码如下

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector
  • 你可能会注意到每次更新dp[i][j],我们只需要dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]就行
  • 事实上我们不必维护整个m*n矩阵。相反维护一栏即可,代码空间复杂度降为O(m)或者O(n)取决于你维护的的是矩阵的一行还是一列
  • 优化后代码如下:

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector

leetcode72. Edit Distance(编辑距离)的更多相关文章

  1. Edit Distance编辑距离(NM tag)- sam/bam格式解读进阶

    sam格式很精炼,几乎包含了比对的所有信息,我们平常用到的信息很少,但特殊情况下,我们会用到一些较为生僻的信息,关于这些信息sam官方文档的介绍比较精简,直接看估计很难看懂. 今天要介绍的是如何通过b ...

  2. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  3. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  5. [leetcode72]Edit Distance(dp)

    题目链接:https://leetcode.com/problems/edit-distance/ 题意:求字符串的最短编辑距离,就是有三个操作,插入一个字符.删除一个字符.修改一个字符,最终让两个字 ...

  6. leetcode72. Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. 【LeetCode每天一题】Edit Distance(编辑距离)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  9. edit distance(编辑距离,两个字符串之间相似性的问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. LINUX测试环境部署mysql(三)

    安装配置mysql 1.安装 查看有没有安装过: yum list installed mysql* rpm -qa | grep mysql* 查看有没有安装包: yum list mysql* 安 ...

  2. (转)Should 断言的基本使用方法

    一.基础 RobotFramework带有丰富的系统关键,使用时无需导入,直接使用,为写自动化用例带来了极大的方便:不能停留在知道或者是会得程度,只有熟练使用各关键字,才能提升自动化用例的写作效率.下 ...

  3. js中event.target

    event.srcElement从字面上可以看出来有以下关键字:事件,源     他的意思就是:当前事件的源, 我们可以调用他的各种属性 就像:document.getElementById(&quo ...

  4. 改进:js修改iOS微信浏览器的title

    问题简介 前端入门没多久,可能连入门也不算,最近网上流行各自书籍改名,什么<前端开发,从入门到放弃>,<Android开发,从入门到改行>之类的,程序员真是个爱自嘲的群体,但我 ...

  5. linux 删除进程的多种方法

    kill pid kill -9 pid kill -15 pid pkill -f *.php kill -s 9 pid

  6. 得到APP【每天听本书】微信交流群(每天更新)

    得到APP[每天听本书]微信交流群,每天更新下载学习资料 添加个人微信号:zhidu10000 进入微信群. “坚持每天读一本书,每天进步1.01,每年进步37.8倍” 2016年书单合辑点此链接,查 ...

  7. MSSQL-实用小工具

    1.创建查询辅助表 create table nums (n int not null) alter table nums add constraint PK_NUMS primary key clu ...

  8. PHP 数组转码

    /** * 数组转码 * @param array $arr 要转码的数组 * @param string $in_charset 输入的字符集 * @param string $out_charse ...

  9. winform上控件太多,绘制时会逐个出现,通常说双缓冲能解决但实际不能解决的问题的解决方法。

    protected override CreateParams CreateParams { get { CreateParams cp = base.CreateParams; cp.ExStyle ...

  10. 一起买beta版本文档报告汇总

    一起买beta版本文档报告汇总 031402401鲍亮 031402402曹鑫杰 031402403常松 031402412林淋 031402418汪培侨 031402426许秋鑫 一.Beta版本冲 ...