• 以下为个人翻译方便理解
  • 编辑距离问题是一个经典的动态规划问题。首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离)。
  • 状态转换方程有两种情况:边界情况和一般情况,以上表示中 i和j均从1开始(注释:即至少一个字符的字符串向一个字符的字符串转换,0字符到0字符转换编辑距离自然为0)
  • 1.边界情况:将一个字符串转化为空串,很容易看出把word[0...i-1]转化成空串“”至少需要i次操作(注释:i次删除),则其编辑距离为i,即:dp[i][0] = i;dp[0][j] = j.
  • 2.一般情况:转化非空字符串word1[0..i - 1] 为另一非空字符串 word2[0..j - 1],此处问题转化为几个个子问题:假定已知word1[0..i - 2] 到 word2[0..j - 2]的编辑距离, 即dp[i - 1][j - 1],只需考虑word[i - 1] 和 word2[j - 1]

    - 如果 word[i - 1] == word2[j - 1],无需操作即可满足word1[0..i - 1] 与 word2[0..j - 1]相同,则编辑距离dp[i][j] = dp[i - 1][j - 1]

    - 如果 word[i - 1] != word2[j - 1],分为三种子情况:

    - 用 word2[j - 1]替换word1[i - 1],则有 (dp[i][j] = dp[i - 1][j - 1] + 1 (一次操作用于替换));

    - 删除 word1[i - 1] 使得 word1[0..i - 2] = word2[0..j - 1],则有(dp[i][j] = dp[i - 1][j] + 1 (一次操作用于删除));

    - 在word1[0..i - 1] 中插入 word2[j - 1] 使得 word1[0..i - 1] + word2[j - 1] = word2[0..j - 1] ,则有(dp[i][j] = dp[i][j - 1] + 1 (一次操作用于插入)).

    为了保证理解插入和删除带来的细微差别,对于删除,其实是将word1[0..i - 2] 转化成 word2[0..j - 1], 编辑距离是 dp[i - 1][j],之后直接删除word1[i - 1],一次操作,插入也是类似

    (注释:就是由word1[0..i - 2] 编辑转化成 word2[0..j - 1],删除word1[i - 1]两个操作共同完成实现将word1[0..i - 1] 转化成 word2[0..j - 1])

  • 合并规如下:
    • dp[i][0] = i;
    • dp[0][j] = j;
    • dp[i][j] = dp[i - 1][j - 1], if word1[i - 1] = word2[j - 1];
    • dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
  • 转化为代码如下

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector
  • 你可能会注意到每次更新dp[i][j],我们只需要dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]就行
  • 事实上我们不必维护整个m*n矩阵。相反维护一栏即可,代码空间复杂度降为O(m)或者O(n)取决于你维护的的是矩阵的一行还是一列
  • 优化后代码如下:

    '''

    class Solution {

    public:

    int minDistance(string word1, string word2) {

    int m = word1.length(), n = word2.length();

    vector

leetcode72. Edit Distance(编辑距离)的更多相关文章

  1. Edit Distance编辑距离(NM tag)- sam/bam格式解读进阶

    sam格式很精炼,几乎包含了比对的所有信息,我们平常用到的信息很少,但特殊情况下,我们会用到一些较为生僻的信息,关于这些信息sam官方文档的介绍比较精简,直接看估计很难看懂. 今天要介绍的是如何通过b ...

  2. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  3. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  5. [leetcode72]Edit Distance(dp)

    题目链接:https://leetcode.com/problems/edit-distance/ 题意:求字符串的最短编辑距离,就是有三个操作,插入一个字符.删除一个字符.修改一个字符,最终让两个字 ...

  6. leetcode72. Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. 【LeetCode每天一题】Edit Distance(编辑距离)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  8. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  9. edit distance(编辑距离,两个字符串之间相似性的问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection 原因

    org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection 可能出现的原因     ...

  2. matchesSelector 匹配选择器表达式sizzle的实现

    Sizzle.matchesSelector = function( node, expr ) {     return Sizzle( expr, null, null, [node] ).leng ...

  3. apache不断占内存过大,导致虚拟机内存不足,处理方法。

    我用512M的vps,访问量不大,但内存占用很大,甚至宕机. 我用top,然后shitf+m发现,httpd占用内存极大.经过网上找资料设置后,用过一段时间终于没再出现内存问题了. 首先查找配置文件的 ...

  4. jquery处理json对象

    在服务器端的php脚本: <?php $data['id'] = 1; $dat['name'] = "mary"; $da['red']= array_merge($dat ...

  5. win版本对比

    Win+R 输入:slmgr.vbs -dlv 显示:最为详尽的激活信息,包括:激活ID.安装ID.激活截止日期slmgr.vbs -dli 显示:操作系统版本.部分产品密钥.许可证状态slmgr.v ...

  6. PHP使用JSON通信

    PHP使用JSON通信 php中使用JSON的Code如下 <?php header("Content-type: text/html; charset=utf-8"); $ ...

  7. Oracle用法集锦

    查询第一条数据 修改表名 ALTER TABLE tablename RENAME TO newtablename 修改列名: ALTER TABLE BD_PRI RENAME COLUMN EU_ ...

  8. Elasticsearch【mappings】类型配置操作

    在介绍ES的更新操作的时候,说过,ES的索引创建是很简单的,没有必要多说,这里是有个前提的,简单是建立在ES默认的配置基础之上的. 比如,当ES安装完毕后,我们就可以通过curl命令完成index,t ...

  9. nginx(tengine)的一些小优化(持续更新)

    1.nginx日志切割脚本 需求来源:nginx本身并没有日志切割的功能,由访问产生的大日志很难进行分析. 实现目的:每天对nginx日志进行切割,并备份至指定文件夹. 简要指令: mv /usr/l ...

  10. 学习taobao框架

    参考:https://github.com/xulingbo/xulingbo.github.io/issues http://blog.csdn.net/hguisu/article/details ...