题目链接:https://www.luogu.com.cn/problem/P3805

Manacher算法$O(n)$:

求以每个字符为中心的最长回文串的半径:
如果要求可以以字符间隙为回文中心,就要在每两个字符之间加入一个’#’,在开头加上'$',然后再解决。

$pos$表示回文字串的对称轴,$mx$表示回文串在最右右边界,很明显$2\times pos-i$即为$i$关于$pos$的对称点。

令$r_i$为以$i$为中心的最长回文半径。从左往右依次求$r$数组:
若$i>mx$,即$i$不在所已知的回文串的范围内,那么就让$r_i$从$1$开始计算。

若$i\leq mx$:

  设$j$为$i$关于$pos$的对称点,即$j=(2\times pos-i)$。

  1),若$r_j>mx-i$,那么不能保证在mx右边仍为回文,所以这时$r_i=mx-i$。

  2),若$r_j\leq mx-i$,那么根据对称性可以直接得到,$r_i=r_j$。

  综上所述,$r_i=min(r_j,mx-i)$。

然后开始暴力往两边扩展,看看是否满足回文。如果右端点扩展到mx右边,则需要更新$mx$和$pos$。

最后不难发现,$r_i-1$中的最大值即为答案,即$ans=max(ans,r_i-1)$。

AC代码:

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
char str[maxn],s[maxn];
int r[maxn]; int manacher(int len){
int t=,ans=;
s[]='$';s[++t]='#';
for(int i=;i<=len;i++){
s[++t]=str[i];
s[++t]='#';
}
int pos=,mx=;
for(int i=;i<=t;i++){
if(i>mx) r[i]=;
else r[i]=min(r[*pos-i],mx-i);
while(i-r[i]>=&&i+r[i]<=t&&s[i+r[i]]==s[i-r[i]]) r[i]++;
if(i+r[i]>mx){
mx=i+r[i];
pos=i;
}
ans=max(ans,r[i]-);
}
return ans;
} int main(){
scanf("%s",str+);
printf("%d\n",manacher(strlen(str+)));
return ;
}

AC代码

洛谷 P3805【模板】manacher算法的更多相关文章

  1. 洛谷P3805 [模板]Manacher算法 [manacher]

    题目传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入输出格式 输入格式: 一行小写英文字符a,b,c...y,z组成的字符 ...

  2. 洛谷.3805.[模板]manacher算法

    题目链接 之前做很早了没写这篇,补上. 记录当前ex[]最大的回文中心id和最远延伸范围mx! 关于串的构造: 应该是 @ #A#B#C#B#A# $ ,而不是 @ A#B#C#B#A $ 比如 @a ...

  3. 洛谷 P3805 【模板】manacher算法

    洛谷 P3805 [模板]manacher算法 洛谷传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入格式 一行小写英文字符 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 【洛谷 P3805】 【模板】manacher算法

    题目链接 manacher算法:在线性时间内求一个字符串中所有/最长回文串的算法. 先来考虑一下暴力的算法,枚举每个中点,向两边扩展,时间复杂度\(O(n^2)\). 来分析下此算法的缺点. 1.因为 ...

  6. [洛谷P3805]【模板】manacher算法

    题目大意:给你一个字符串,求出它的最长回文字段 题解:$manacher$算法 卡点:$p$数组未开两倍空间 C++ Code: #include <cstdio> #include &l ...

  7. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  8. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  9. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

随机推荐

  1. mysql之数据初始化update操作

    1.单表的:update user set name = (select name from user where id in (select id from user where name='小苏' ...

  2. 深入理解IP之CIDR

    现代IP基于分类的IP越来越少,而基于CIDR的方式的越来越多.那么可以看下面这篇文章: https://www.cnblogs.com/hark0623/p/6547432.html 这篇文章对CI ...

  3. 创建基于ASP.NET core 3.1 的RazorPagesMovie项目(三)-已搭建基架的Razor页面解释和更新

    本节主要介绍在上一节中通过搭建基架而创建的Razor页面,并做一些UI改变. 一.创建.删除.详细信息和编辑页面 1.双击Pages/Movies/Index.cshtml.cs文件,这是一个Razo ...

  4. SpringBoot整合WEB开发--(十)配置AOP

    简介: SpringBoot框架中对AOP有很好的支持,简单AOP概念: JoinPoint(连接点):类里面可以被增强的方法即为连接点,例如,想修改哪个方法的功能,那么该方法就是一个连接点. Poi ...

  5. 51Nod 1432 独木舟 (贪心)

    n个人,已知每个人体重.独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人.显然要求总重量不超过独木舟承重,假设每个人体重也不超过独木舟承重,问最少需要几只独木舟? Input 第一行包含 ...

  6. Accept Xcode/iOS License to run git

    在没有安装Xcode的情况下, 使用了 webstorm 的git,提示 安装xcode,安装完成后,并没有打开xcode,而是再次使用git,发现 提示 输入以下命令行: sudo xcodebui ...

  7. Selenium3+python自动化009- 多选框

    多选框 # 随机选择多选框# sports=driver.find_elements_by_name("sport")# maxnum=len(sports)# num=rando ...

  8. 04 部署uwsgi web服务器

    1 建立uwsgi软链接 进入虚拟环境,并在虚拟环境中安装uwsgi,建立软链接. $ cd /venv/thvenv/bin $ activate $ pip install uwsgi 2 创建u ...

  9. 题解【BZOJ4472】[JSOI2015]salesman

    题面 树形\(\text{DP}\)与贪心的结合. 首先考虑树形\(\text{DP}\). 设\(dp_i\)表示从\(i\)出发,访问\(i\)的子树,并且最后回到\(i\)能获得的最大收益. 转 ...

  10. SQL With As的用法

    WITH AS,也叫子查询部分(subquery factoring),可以定义一个SQL片断,该SQL片断会被整个SQL语句用到.可以使SQL语句的可读性更高,也可以在UNION ALL的不同部分, ...