题解【SP8002】HORRIBLE - Horrible Queries
题解
这是一道线段树的模板题。
题目需要我们维护一个支持区间修改、区间查询的一个数据结构,很容易想到线段树。
然后发现和洛谷上线段树的模板1是同一道题。
由于本题中每个数的初始值都为\(0\),因此我们就不需要建树,直接开始把树上每个结点的值都初始化成\(0\)即可。
修改时寻找指定区间,维护一下\(lazy\ tag\)并更新节点的值即可。
查询时和修改同理,只是把查找更新的区间变成了加上区间的和。
注意:
- 数据有\(T\)组,因此每组数据开头都需要清空数组;
- \(lazy\ tag\)标记下传时要注意最后清空当前节点的\(lazy\ tag\);
- 需要开\(long\ long\)。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#define int long long
#define itn int
#define gI gi
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
}
int n, ans[100005 << 2], tag[100005 << 2];
inline int ls(int x) {return x << 1;}//左儿子
inline int rs(int x) {return x << 1 | 1;}//右儿子
inline void push_up(int x)//上传标记
{
ans[x] = ans[ls(x)] + ans[rs(x)];//求和
}
inline void pushdown(int p, int l, int r)//下传标记
{
if (tag[p])//如果还有标记
{
ans[ls(p)] = ans[ls(p)] + tag[p] * l;
ans[rs(p)] = ans[rs(p)] + tag[p] * r;//加上和
tag[ls(p)] = tag[ls(p)] + tag[p];
tag[rs(p)] = tag[rs(p)] + tag[p];//加上标记
tag[p] = 0;//清零标记
}
}
void upd(int nl, int nr, int l, int r, int p, int k)//更新操作
{
if (nl <= l && nr >= r)//当前区间包含于要更新的区间
{
ans[p] = ans[p] + (r - l + 1) * k, tag[p] = tag[p] + k;//加上和并记录lazy标记
return;
}
int mid = (l + r) >> 1;
pushdown(p, mid - l + 1, r - mid);//下传lazy标记
if (nl <= mid) upd(nl, nr, l, mid, ls(p), k);//更新左区间
if (nr > mid) upd(nl, nr, mid + 1, r, rs(p), k);//更新右区间
push_up(p);//上传节点
}
int getans(int ql, int qr, int l, int r, int p)//求和操作,与更新同理
{
int sum = 0;
if (ql <= l && qr >= r) return ans[p];
int mid = (l + r) >> 1;
pushdown(p, mid - l + 1, r - mid);
if (ql <= mid) sum = sum + getans(ql, qr, l, mid, ls(p));
if (qr > mid) sum = sum + getans(ql, qr, mid + 1, r, rs(p));
return sum;
}
signed main()
{
int T = gi();
while (T--)//多组数据
{
memset(tag, 0, sizeof(tag));
memset(ans, 0, sizeof(ans));//多组数据记得清空数组
int n = gi(), m = gi();
for (int i = 1; i <= m; i++)
{
int fl = gi();
if(fl == 0)//修改操作
{
int x = gi(), y = gi(), k = gi();
upd(x, y, 1, n, 1, k);
}
else//求和操作
{
int x = gi(), y = gi();
printf("%lld\n", getans(x, y, 1, n, 1));
}
}
}
return 0;//结束
}
题解【SP8002】HORRIBLE - Horrible Queries的更多相关文章
- 【题解】A Horrible Poem
题目大意 给出一个由小写英文字母组成的字符串 S,再给出 q 个询问,要求回答 S 某个子串的最短循环节. 如果字符串 B 是字符串 A 的循环节,那么 A 可以由 B 重复若干次得到. 输入格式 第 ...
- 题解-Codeforces710F String Set Queries
咕了好久没更博客,最近得知可以去冬眠营玩耍,还可以搭顺风车回广州过年 (最近做到的比较有意思的题目:bzoj3958.hihocoder1419) Problem Codeforces-710F--洛 ...
- 题解-------CF1304E 1-Trees and Queries
传送门 题目大意 给你一棵无根树,然后询问Q次,每次把点$x$和点$y$连接,问你从点$a$到点$b$是否有一条长度为$k$的简单路径,每次询问完后会把新添加的边删除. 思路:树上LCA 题目跟201 ...
- Mysql存储引擎之TokuDB以及它的数据结构Fractal tree(分形树)
在目前的Mysql数据库中,使用最广泛的是innodb存储引擎.innodb确实是个很不错的存储引擎,就连高性能Mysql里都说了,如果不是有什么很特别的要求,innodb就是最好的选择.当然,这偏文 ...
- 分形树Fractal tree介绍——具体如何结合TokuDB还没有太懂,先记住其和LSM都是一样的适合写密集
在目前的Mysql数据库中,使用最广泛的是innodb存储引擎.innodb确实是个很不错的存储引擎,就连高性能Mysql里都说了,如果不是有什么很特别的要求,innodb就是最好的选择.当然,这偏文 ...
- Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)
Servlet3.0提供@WebFilter注解将一个实现了javax.servlet.Filter接口的类定义为过滤器,这样我们在web应用中使用过滤器时,也不再需要在web.xml文件中配置过滤器 ...
- MySQL 高性能存储引擎:TokuDB初探
在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduDB做一个初步的整理,使用后再做更多的分享. 什么是TokuDB? 在MySQL最流行的支持全事务的引擎为 ...
- MySQL-TokuDB:MySQL 高性能存储引擎:TokuDB
ylbtech-MySQL-TokuDB:MySQL 高性能存储引擎:TokuDB 1.返回顶部 1. 在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduD ...
- Codeforces 556D Restructuring Company
传送门 D. Restructuring Company time limit per test 2 seconds memory limit per test 256 megabytes input ...
随机推荐
- python ide 使用
pycharm jupyter 官方文档 使用 部署到服务器 参考 配置域名(反向代理) *.conf文件 server { listen ; server_name ju.iii.top; inde ...
- PAT (Basic Level) Practice (中文)1030 完美数列 (25 分) (有点意思)
给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列. 现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列. 输入格 ...
- ST表求区间最值
#include<bits/stdc++.h> #define ll long long #define lowbit(x) x&-x using namespace std; ; ...
- 10.3 c++ STL 初步
#include<Windows.h>#include<iostream>#include<algorithm> // sort swap min ma ...
- Keras 回归 拟合 收集
案例1 from keras.models import Sequential from keras.layers import Dense, LSTM, Activation from keras. ...
- Graph Regularized Feature Selection with Data Reconstruction
Abstract • 从图正则数据重构方面处理无监督特征选择: • 模型的思想是所选特征不仅通过图正则保留了原始数据的局部结构,也通过线性组合重构了每个数据点: • 所以重构误差成为判断所选特征质量的 ...
- [shell脚本] mysql服务启动脚本
服务启动脚本(初始化.启动.登录) #!/bin/bash export PID=/usr/local/nestdb_master/bin/mysqld export PASSWORD=123456 ...
- 将自定义工程加入到python根目录下
1. 在D:\Program Files\Python\Lib\site-packages 添加.pth文件,文件名为模块名称(即auto_XXX),文件内容为模块所在目录.(python添加自定义的 ...
- Java大全-吐血整理
gqzdev
- 关于print()、sys.stdout、sys.stderr的一些理解
print() 方法的语法: print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False) 其中file = sys.stdout的 ...