Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer \(N\) is said to be a "round number" if the binary representation of \(N\) has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ \(Start\) < \(Finish\) ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively \(Start\) and \(Finish\).

Output

Line 1: A single integer that is the count of round numbers in the inclusive range \(Start..Finish\)

Sample Input

2 12

Sample Output

6

Source

USACO 2006 November Silver

Solution

简化版题意:求出一个区间[a,b]中有多少个“Round Number”,一个数是“Round Number”当且仅当它的二进制表示法中0的个数>=1的个数,其中\(1 \leqslant A, B \leqslant 2,000,000,000\)。

我们可以根据题意先写一个简单的暴力:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
}
//以上不解释 inline bool pd(int x)//判断一个数是不是"Round Number"
{
int y = 0, z = 0;//y是存二进制数中1的个数,z是存0的个数 while (x > 0)
{
if (x & 1)//如果这一位是0
{
++y;//y就加1
}
else
{
++z;//否则z就加1
} x = x >> 1;//x除以2
} return z >= y;//这个语句的意思是:如果z>=y,就返回true,否则返回false。
} int a, b, sum;//a、b是题目中的意思,sum是答案 int main()
{
a = gi(), b = gi();//输入a、b for (int i = a; i <= b; i++)//从a到b枚举
{
if (pd(i))//如果i是“Round Number"
{
++sum;//sum就加一
}
} printf("%d", sum);//最后输出sum return 0;//结束
}

因为\(1 \leqslant A, B \leqslant 2,000,000,000\),很明显,以上代码小数据能AC,但是大数据会TLE。

因此,我们要使用一个更加高效的算法——数位DP。

什么是数位DP呢?可以参考这篇文章:http://www.cnblogs.com/real-l/p/8540124.html

回到这一题:

我们设Rn[n,m]表示区间[n,m]中Round Number的个数,我们利用前缀和,就有:

Rn[a,b] = Rn[0, b] - Rn[0, a - 1]

记忆化搜索思路:

设dp[a][n0][n1]表示从高往低到达第a位时含有n0个0和n1个1在后面任意填时该状态下的总个数。

注意加一个变量flag来判断是否含有前导0。

直接DP思路:

先预处理出dp[i][j]表示前i位有j个0的方案数,然后从高位数位到低位数位DP。

Code

记忆化搜索:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
} int dp[35][35][35], wei[35]; int dfs(int a, int n0, int n1, int ddd, int flag)
{
if (a == 0)
{
if (flag == 0)//这里不判断flag==0也可以,判不判断的区别在于是不是把0算上,判断就不把0算上了
{
if (n0 >= n1)
{
return 1;
}
else
{
return 0;
}
} return 0;
} if (ddd == 0 && dp[a][n0][n1] != -1)
{
return dp[a][n0][n1];
} int ed = ddd ? wei[a] : 1, ans = 0, nu0, nu1; for (int i = 0; i <= ed; i++)
{
if (flag && i == 0)
{
nu0 = nu1 = 0;
}
else
{
if (i == 0)
{
nu0 = n0 + 1, nu1 = n1;
}
else
{
nu0 = n0, nu1 = n1 + 1;
}
} ans = ans + dfs(a - 1, nu0, nu1, ddd && i == ed, flag && i == 0);
} if (ddd == 0)
{
dp[a][n0][n1] = ans;
} return ans;
} int solve(int x)
{
int tot = 0; while (x)
{
wei[++tot] = x & 1; x = x >> 1;
} return dfs(tot, 0, 0, 1, 1);
} int a, b; int main()
{
memset(dp, -1, sizeof(dp)); a = gi(), b = gi(); printf("%d\n", solve(b) - solve(a - 1)); return 0;
}

动态规划代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
} int dp[40][40]; inline int getans(int x)
{
int t = x, wei[40], len = 0, sum = 0, n0 = 0, n1 = 0;; while (t)
{
wei[++len] = t & 1; t = t >> 1;
} for (int i = len - 1; i >= 1; i--)//这里先把第len位变为0,然后一次枚举最高的位数在第i位
{
for (int j = 0; j <= i - 1; j++)
{
if (j >= i - j)
{
sum = sum + dp[i - 1][j];
}
}
} n1 = 1; for (int i = len - 1; i >= 1; i--)//这里是在第len位为1的情况下进行dp
{
if (wei[i] == 1)
{
if (i == 1)
{
if (n0 + 1 >= n1)
{
++sum;
}
}
else
{
for (int j = 0; j <= i - 1; j++)
{
if (j + n0 + 1 >= n1 + i - 1 - j)
{
sum = sum + dp[i - 1][j];
}
}
} ++n1;
}
else
{
++n0;
}
} return sum;
} int a, b; int main()
{
a = gi(), b = gi(); memset(dp, 0, sizeof(dp)); dp[1][1] = 1, dp[1][0] = 1; for (int i = 1; i <= 32; i++)
{
for (int j = 0; j <= i; j++)
{
dp[i + 1][j] = dp[i + 1][j] + dp[i][j], dp[i + 1][j + 1] = dp[i + 1][j + 1] + dp[i][j];
}
} printf("%d", getans(b + 1) - getans(a)); return 0;
}

题解【POJ3252】Round Numbers的更多相关文章

  1. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  2. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  3. poj3252 Round Numbers(数位dp)

    题目传送门 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16439   Accepted: 6 ...

  4. poj3252 Round Numbers

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7625   Accepted: 2625 Des ...

  5. poj3252 Round Numbers (数位dp)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  6. POJ3252 Round Numbers 题解 数位DP

    题目大意: 求区间 \([x,y]\) 范围内有多少数的二进制表示中的'0'的个数 \(\ge\) '1'的个数. 解题思路: 使用 数位DP 解决这个问题. 我们设状态 f[pos][num0][n ...

  7. POJ3252 Round Numbers 【数位dp】

    题目链接 POJ3252 题解 为什么每次写出数位dp都如此兴奋? 因为数位dp太苟了 因为我太弱了 设\(f[i][0|1][cnt1][cnt0]\)表示到二进制第\(i\)位,之前是否达到上界, ...

  8. POJ3252 Round Numbers(不重复全排列)

    题目问区间有多少个数字的二进制0的个数大于等于1的个数. 用数学方法求出0到n区间的合法个数,然后用类似数位DP的统计思想. 我大概是这么求的,确定前缀的0和1,然后后面就是若干个0和若干个1的不重复 ...

  9. poj3252 Round Numbers[数位DP]

    地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...

随机推荐

  1. R ggplot学习笔记1

    R 可视化学习笔记 记参数挺费劲的,还是用的时候查官方文档吧,现在记个大概就行吧~ 1.ggplot2分层次绘图 1.1 核心理念 把绘图与数据分离,把数据相关的绘图与数据无关的绘图分离,按图层作图. ...

  2. CF573E Bear and Bowling(6-1)

    题意 洛谷 做法一 考虑一种贪心(先别管对不对),设当前已选择的集合为\(A\),这是考虑该集合的补集,每个元素加进来后的增量为\(V_i\),则挑选最大的那个加入该集合 结论1:遵循上述贪心,\(\ ...

  3. Codeforces Round #624 (Div. 3)

    A.题意:通过加奇数减偶数的操作从a到b最少需要几步 签到题 #include <algorithm> #include <iostream> #include <cst ...

  4. linux c++调试日志函数

    #ifndef MYLOG_H #define MYLOG_H #include <stdio.h> #define __DEBUG__ #ifdef __DEBUG__ #define ...

  5. HTML文档快捷键

    一.web浏览器 1.刷新网页   F5 二.VS Code 常用快捷键 1.快速生成HTML代码 首先,建立一个空文档,选择编程语言为HTML: 其次,按下!(英文状态下),再按下tab键,就可以了 ...

  6. PHP自定义函数+系统函数库

    全局变量 $n = 5; //全局变量 function fun1(){ global $n; $n++; } fun1(); echo '<hr>'; $n = 6; function ...

  7. Unknown CMake command "check_symbol_exists".

    - Using these message generators: gencpp;geneus;genlisp;gennodejs;genpyCMake Error at CMakeLists.txt ...

  8. RN开发-Linux开发环境搭建(Ubuntu 12.04)

    1.首先安装JDK 2.安装Android开发环境 3.安装node.js 3.1 官网下载 : node-v6.9.1-linux-x64 3.2 添加环境变量 sudo vi /etc/profi ...

  9. MySQL 8.0.18 在 Windows Server 2019 上的安装(ZIP)公开

    AskScuti MySQL : Windows Server 2019 安装 MySQL 8.0 温馨提示:为了展现我最“魅力”的一面,请用谷歌浏览器撩我. 一切就绪,点我开撩

  10. Linux之温故知新1

    1.touch命令的使用 2.使用(cd -)可以在上次使用的目录来回切换 3.ls通配符的使用*代表任意字符和任意个字符, ?代表任意一个字符, [12345]中的任意一个字符, [1-5]中的任意 ...