Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer \(N\) is said to be a "round number" if the binary representation of \(N\) has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ \(Start\) < \(Finish\) ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively \(Start\) and \(Finish\).

Output

Line 1: A single integer that is the count of round numbers in the inclusive range \(Start..Finish\)

Sample Input

2 12

Sample Output

6

Source

USACO 2006 November Silver

Solution

简化版题意:求出一个区间[a,b]中有多少个“Round Number”,一个数是“Round Number”当且仅当它的二进制表示法中0的个数>=1的个数,其中\(1 \leqslant A, B \leqslant 2,000,000,000\)。

我们可以根据题意先写一个简单的暴力:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
}
//以上不解释 inline bool pd(int x)//判断一个数是不是"Round Number"
{
int y = 0, z = 0;//y是存二进制数中1的个数,z是存0的个数 while (x > 0)
{
if (x & 1)//如果这一位是0
{
++y;//y就加1
}
else
{
++z;//否则z就加1
} x = x >> 1;//x除以2
} return z >= y;//这个语句的意思是:如果z>=y,就返回true,否则返回false。
} int a, b, sum;//a、b是题目中的意思,sum是答案 int main()
{
a = gi(), b = gi();//输入a、b for (int i = a; i <= b; i++)//从a到b枚举
{
if (pd(i))//如果i是“Round Number"
{
++sum;//sum就加一
}
} printf("%d", sum);//最后输出sum return 0;//结束
}

因为\(1 \leqslant A, B \leqslant 2,000,000,000\),很明显,以上代码小数据能AC,但是大数据会TLE。

因此,我们要使用一个更加高效的算法——数位DP。

什么是数位DP呢?可以参考这篇文章:http://www.cnblogs.com/real-l/p/8540124.html

回到这一题:

我们设Rn[n,m]表示区间[n,m]中Round Number的个数,我们利用前缀和,就有:

Rn[a,b] = Rn[0, b] - Rn[0, a - 1]

记忆化搜索思路:

设dp[a][n0][n1]表示从高往低到达第a位时含有n0个0和n1个1在后面任意填时该状态下的总个数。

注意加一个变量flag来判断是否含有前导0。

直接DP思路:

先预处理出dp[i][j]表示前i位有j个0的方案数,然后从高位数位到低位数位DP。

Code

记忆化搜索:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
} int dp[35][35][35], wei[35]; int dfs(int a, int n0, int n1, int ddd, int flag)
{
if (a == 0)
{
if (flag == 0)//这里不判断flag==0也可以,判不判断的区别在于是不是把0算上,判断就不把0算上了
{
if (n0 >= n1)
{
return 1;
}
else
{
return 0;
}
} return 0;
} if (ddd == 0 && dp[a][n0][n1] != -1)
{
return dp[a][n0][n1];
} int ed = ddd ? wei[a] : 1, ans = 0, nu0, nu1; for (int i = 0; i <= ed; i++)
{
if (flag && i == 0)
{
nu0 = nu1 = 0;
}
else
{
if (i == 0)
{
nu0 = n0 + 1, nu1 = n1;
}
else
{
nu0 = n0, nu1 = n1 + 1;
}
} ans = ans + dfs(a - 1, nu0, nu1, ddd && i == ed, flag && i == 0);
} if (ddd == 0)
{
dp[a][n0][n1] = ans;
} return ans;
} int solve(int x)
{
int tot = 0; while (x)
{
wei[++tot] = x & 1; x = x >> 1;
} return dfs(tot, 0, 0, 1, 1);
} int a, b; int main()
{
memset(dp, -1, sizeof(dp)); a = gi(), b = gi(); printf("%d\n", solve(b) - solve(a - 1)); return 0;
}

动态规划代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; inline int gi()
{
int f = 1, x = 0;
char c = getchar(); while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
} while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
} return f * x;
} int dp[40][40]; inline int getans(int x)
{
int t = x, wei[40], len = 0, sum = 0, n0 = 0, n1 = 0;; while (t)
{
wei[++len] = t & 1; t = t >> 1;
} for (int i = len - 1; i >= 1; i--)//这里先把第len位变为0,然后一次枚举最高的位数在第i位
{
for (int j = 0; j <= i - 1; j++)
{
if (j >= i - j)
{
sum = sum + dp[i - 1][j];
}
}
} n1 = 1; for (int i = len - 1; i >= 1; i--)//这里是在第len位为1的情况下进行dp
{
if (wei[i] == 1)
{
if (i == 1)
{
if (n0 + 1 >= n1)
{
++sum;
}
}
else
{
for (int j = 0; j <= i - 1; j++)
{
if (j + n0 + 1 >= n1 + i - 1 - j)
{
sum = sum + dp[i - 1][j];
}
}
} ++n1;
}
else
{
++n0;
}
} return sum;
} int a, b; int main()
{
a = gi(), b = gi(); memset(dp, 0, sizeof(dp)); dp[1][1] = 1, dp[1][0] = 1; for (int i = 1; i <= 32; i++)
{
for (int j = 0; j <= i; j++)
{
dp[i + 1][j] = dp[i + 1][j] + dp[i][j], dp[i + 1][j + 1] = dp[i + 1][j + 1] + dp[i][j];
}
} printf("%d", getans(b + 1) - getans(a)); return 0;
}

题解【POJ3252】Round Numbers的更多相关文章

  1. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  2. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  3. poj3252 Round Numbers(数位dp)

    题目传送门 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16439   Accepted: 6 ...

  4. poj3252 Round Numbers

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7625   Accepted: 2625 Des ...

  5. poj3252 Round Numbers (数位dp)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  6. POJ3252 Round Numbers 题解 数位DP

    题目大意: 求区间 \([x,y]\) 范围内有多少数的二进制表示中的'0'的个数 \(\ge\) '1'的个数. 解题思路: 使用 数位DP 解决这个问题. 我们设状态 f[pos][num0][n ...

  7. POJ3252 Round Numbers 【数位dp】

    题目链接 POJ3252 题解 为什么每次写出数位dp都如此兴奋? 因为数位dp太苟了 因为我太弱了 设\(f[i][0|1][cnt1][cnt0]\)表示到二进制第\(i\)位,之前是否达到上界, ...

  8. POJ3252 Round Numbers(不重复全排列)

    题目问区间有多少个数字的二进制0的个数大于等于1的个数. 用数学方法求出0到n区间的合法个数,然后用类似数位DP的统计思想. 我大概是这么求的,确定前缀的0和1,然后后面就是若干个0和若干个1的不重复 ...

  9. poj3252 Round Numbers[数位DP]

    地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...

随机推荐

  1. 安装DHCP到CentOS(YUM)

    运行环境 系统版本:CentOS Linux release 7.3.1611 (Core) 软件版本:DHCP-x 硬件要求:无 安装过程 1.安装YUM源,由EPEL提供 [root@localh ...

  2. 积分题1之来自G.Han的一道积分题

    今天,收到G.Han的提问,第一个是计算积分 \[\int_0^{\infty}{\frac{\ln x}{(x^2+1)^n}dx}\]顿时不明觉厉,然后在宝典<Table of Integr ...

  3. Python之五:函数

    函数会给一段语句块命名,我们可以在任何时候调用它,运行其中的代码 它的一班语法: def fun_name(x): 函数语句体 return a def :说明这是一个函数,我们定义了一个函数: fu ...

  4. yii2 生成随机字符串

    uuid uuid use Faker\Provider\Uuid; Uuid::uuid(); yii自带 生成32位字符串 Yii::$app->getSecurity()->gene ...

  5. [P5490] 【模板】扫描线 - 线段树

    求 \(n\) 个矩形的面积并 Solution 将矩形转化为 \(y_1\) 位置的 + 修改 和 \(y_2\) 位置的 - 修改.然后按照 \(+y\) 顺序依次处理所有的修改,到达的一个新的位 ...

  6. 浅谈C#委托的用法-delegate

    2018年11月7日     小雨 一.委托的概念 委托和类一样是一种用户自定义类型,它存储的就是一系列具有相同签名和返回类型的方法的地址,调用委托的时候,它所包含的所有方法都会被执行. 借用百度上的 ...

  7. python笔记20(面向对象课程二)

    今日内容 类成员 成员修饰符 内容回顾 & 补充 三大特性 封装 函数封装到类 数据封装到对象 * class Foo: def __init__(self,name,age): self.n ...

  8. logistic回归损失函数(非常重要,深入理解)

    2.2 logistic回归损失函数(非常重要,深入理解) 上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学 ...

  9. Freezable 对象概述 | Microsoft Docs

    原文:Freezable 对象概述 | Microsoft Docs Freezable 对象概述Freezable Objects Overview 2017/03/30 本文内容 什么是可冻结的? ...

  10. C++——一维数组

    6.数组 指针与字符串 6.1 数组 数组是具有一定顺序关系的若干相同类型变量的集合体,组成数组的变量成为数组的元素.数组属于构造类型. 一维数组的声明: 类型说明符 数组名[常量表达式],若int ...