题面

首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值。

这个状态设计是可以通过本题的,但其实还有更加简洁的状态设计。

我们设 \(dp_{k,x1,x2}\) 表示第一条路线和第二条路线分别走了 \(k\) 步,其中第一条路线走到了 \((x1,k - x1)\) ,第二条路线走到了 \((x2, k - x2)\) 的路径上的数的和的最大值。

关于 \(x1\) 和 \(x2\) 的取值范围:因为 \(1 \leq x1,x2 \leq n\) ,且 \(1 \leq k-x1, k-x2 \leq m\) ,所以我们可以得出 \(\max(1,k-m) \leq x1,x2 \leq \min(k-1,n)\) 。

由于每一次移动只能向下或向右,因此转移就比较明显了,这里不再赘述。

如果两条路径没有重叠,那么就可以分别加上 \((x1,k-x1)\) 和 \((x2,k-x2)\) 位置上的数。

注意答案要输出 \(dp_{n+m,n,n}\) ,不是 \(dp_{n+m,n,m}\) 。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi using namespace std; typedef long long LL;
typedef pair <int, int> PII;
typedef pair <int, PII> PIII; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} const int maxn = 53; int n, m, a[maxn][maxn], dp[maxn * 2][maxn][maxn], ans = 0; int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), m = gi();
for (int i = 1; i <= n; i+=1)
{
for (int j = 1; j <= m; j+=1)
{
a[i][j] = gi();
}
}
for (int k = 1; k <= n + m; k+=1)
{
for (int x1 = max(1, k - m); x1 <= min(k - 1, n); x1+=1)
{
for (int x2 = max(1, k - m); x2 <= min(k - 1, n); x2+=1)
{
//计算出新增加的数的和
int t = a[x1][k - x1];
if (x1 != x2) t += a[x2][k - x2];
//转移状态
int &v = dp[k][x1][x2];
v = max(v, dp[k - 1][x1][x2] + t);
v = max(v, dp[k - 1][x1 - 1][x2] + t);
v = max(v, dp[k - 1][x1][x2 - 1] + t);
v = max(v, dp[k - 1][x1 - 1][x2 - 1] + t);
}
}
}
//输出答案
printf("%d\n", dp[n + m][n][n]);
return 0;
}

题解【AcWing275】[NOIP2008]传纸条的更多相关文章

  1. <转自原博客> NOIP2008 传纸条

    小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以 ...

  2. NOIP2008 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  3. NOIP2008传纸条[DP]

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  4. CH5103 [NOIP2008]传纸条[线性DP]

    给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...

  5. NOIP2008 传纸条(DP及滚动数组优化)

    传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...

  6. 洛谷P1006 NOIP提高组2008 传纸条

    P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无 ...

  7. Codevs1169:传纸条——题解

    题目描述 Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...

  8. 【NOIP2008】传纸条

    [描述] Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...

  9. NOIP2008 T3 传纸条 解题报告——S.B.S.

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

随机推荐

  1. 硬件知识整理part2--电阻在反馈网络中的应用

    学而不厌,诲人不倦,不知老之将至.--孔子 电阻作为电路中基本的元器件之一.在电路设计中,我们有时会使用欧姆定律来大致估计一下电阻值的大小,但是大多时候我们是不用去过多考虑电阻值的大小,像我这样大方的 ...

  2. vsto 学习

    Object到String类型转换的四种方式 通常object到string有四种方式:(假设有object obj) obj.ToString, Convert.ToString, (string) ...

  3. 有关配置网站时安装ZipArache的方法。

    在配置网站初始化过程中,发现ZipArache需要启动,上网搜索了一番,发现安装ZipArache的步骤十分繁琐. 换一种思路,ZipArache作为PHP的拓展类,其名字首部有ZIP字样,那么可否直 ...

  4. 吴裕雄--天生自然HADOOP操作实验学习笔记:hive DDL

    实验目的 了解hive DDL的基本格式 了解hive和hdfs的关系 学习hive在hdfs中的保存方式 学习一些典型常用的hiveDDL 实验原理 有关hive的安装和原理我们已经了解,这次实验我 ...

  5. mybatis-plus invalid bound statement (not found) insert解决办法

    使用mybatis-plus时,使用IService.insert方法时,提示找不到insert方法,原因是,mybatis-plus提供了两个BaseMapper和IService. 改成引用imp ...

  6. 【spring boot】SpringBoot初学(2.1) - properties读取明细

    前言 算是对<SpringBoot初学(2) - properties配置和读取>的总结吧. 概念性总结 一.Spring Boot允许外化(externalize)你的配置.可以使用pr ...

  7. 调用手机摄像头并上传图片--jquery ajax

    1.图片框样式与进度条样式 .alert_img_content { width: 44%; float: left; margin: 3%; border: 1px solid #ddd; back ...

  8. Win10如何设置休眠选项(关于睡眠、休眠、快速启动这几个伪关机功能如何设置更适合笔记本电脑?)

    · Win10如何设置休眠选项(关于睡眠.休眠.快速启动这几个伪关机功能如何设置更适合笔记本电脑?) 应用场景 升级正式版win10以后,发现竟然没有休眠选项,从电源管理器里面也没有找到,有时候有些重 ...

  9. 树hash/树哈希 刷题记录

    不同hash姿势: 树的括号序列最小表示法  s[i] 如果i为叶子节点:() 如果i的子节点为j1~jn:(s[j1]...s[jn]),注意s[j]要按照字典序排列

  10. MAT(memory anlayzer tool)使用方法

    Analyzing and understanding the memory use of an application is challenging. A subtle logic error ca ...