本篇内容有clip_by_value、clip_by_norm、gradient clipping

1.tf.clip_by_value

a = tf.range(10)
print(a)
# if x<a res=a,else x=x
print(tf.maximum(a,2))
# if x>a,res=a,else x=x
print(tf.minimum(a,8))
# 综合maximum和minimum两个函数的功能,指定上下限
print(tf.clip_by_value(a,2,8))

2.tf.clip_by_norm

# 随机生成一个2行2列的tensor
a = tf.random.normal([2,2],mean=10)
# 打印二范数
print(tf.norm(a))
# 根据新的norm进行放缩
print(tf.clip_by_norm(a,15))
print(tf.norm(tf.clip_by_norm(a,15)))

3.tf.clip_by_global_norm

# gradient clipping为解决梯度下降和梯度消失问题
# 可保证整体向量同时缩放(等倍数)
for g in grads:
grads,_ = tf.clip_by_global_norm(grads,15)

实测:

import  tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers
import os os.environ['TF_CPP_MIN_LOG_LEVEL']=''
print(tf.__version__) (x, y), _ = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 50.
y = tf.convert_to_tensor(y)
y = tf.one_hot(y, depth=10)
print('x:', x.shape, 'y:', y.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128).repeat(30)
x,y = next(iter(train_db))
print('sample:', x.shape, y.shape)
# print(x[0], y[0]) def main(): # 784 => 512
w1, b1 = tf.Variable(tf.random.truncated_normal([784, 512], stddev=0.1)), tf.Variable(tf.zeros([512]))
# 512 => 256
w2, b2 = tf.Variable(tf.random.truncated_normal([512, 256], stddev=0.1)), tf.Variable(tf.zeros([256]))
# 256 => 10
w3, b3 = tf.Variable(tf.random.truncated_normal([256, 10], stddev=0.1)), tf.Variable(tf.zeros([10])) optimizer = optimizers.SGD(lr=0.01) for step, (x,y) in enumerate(train_db): # [b, 28, 28] => [b, 784]
x = tf.reshape(x, (-1, 784)) with tf.GradientTape() as tape: # layer1.
h1 = x @ w1 + b1
h1 = tf.nn.relu(h1)
# layer2
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
# output
out = h2 @ w3 + b3
# out = tf.nn.relu(out) # compute loss
# [b, 10] - [b, 10]
loss = tf.square(y-out)
# [b, 10] => [b]
loss = tf.reduce_mean(loss, axis=1)
# [b] => scalar
loss = tf.reduce_mean(loss) # compute gradient
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
# print('==before==')
# for g in grads:
# print(tf.norm(g)) grads, _ = tf.clip_by_global_norm(grads, 15) # print('==after==')
# for g in grads:
# print(tf.norm(g))
# update w' = w - lr*grad
optimizer.apply_gradients(zip(grads, [w1, b1, w2, b2, w3, b3])) if step % 100 == 0:
print(step, 'loss:', float(loss)) if __name__ == '__main__':
main()

tensorflow张量限幅的更多相关文章

  1. AI - TensorFlow - 张量(Tensor)

    张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...

  2. Tensorflow张量

    张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...

  3. tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。

    x = tf.placeholder(tf.float32, [None, 784]) x isn't a specific value. It's a placeholder, a value th ...

  4. TensorFlow2.0(五):张量限幅

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  5. tensorflow张量排序

    本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range( ...

  6. TensorFlow—张量运算仿真神经网络的运行

    import tensorflow as tf import numpy as np ts_norm=tf.random_normal([]) with tf.Session() as sess: n ...

  7. Tensorflow张量的形状表示方法

    对输入或输出而言: 一个张量的形状为a x b x c x d,实际写出这个张量时: 最外层括号[…]表示这个是一个张量,无别的意义! 次外层括号有a个,表示这个张量里有a个样本 再往内的括号有b个, ...

  8. 121、TensorFlow张量命名

    # tf.Graph对象定义了一个命名空间对于它自身包含的tf.Operation对象 # TensorFlow自动选择一个独一无二的名字,对于数据流图中的每一个操作 # 但是给操作添加一个描述性的名 ...

  9. 吴裕雄--天生自然TensorFlow2教程:张量限幅

    import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a ...

随机推荐

  1. [Python]逻辑运算符 and or

    复习老男孩全栈二期视频的时候 圆号老师测试的用例两个集合and 和or操作的时候的问题 >>> a = set("what") >>> b = ...

  2. 题解【Luogu6022 快乐水】

    \[ Preface \] 大概在半年前出过这道((( 然后当天读完这题,把自己写的 std 改了一下 ll 和特判信息交上去就 A 了. 捡了个大便宜. \[ Description \] 你一开始 ...

  3. Mac安装Mysql-python遇到的坑,被这俩报错反复摩擦:'my_config.h' file not found 和 IndexError: string index out of range

    最后Stackoverflow上面的大神解决了问题: Link brew install mysql brew unlink mysql brew install mysql-connector-c ...

  4. java架构之路-(微服务专题)feign的基本使用和nacos的配置中心

    上次回归: 上次我们说了ribbon的基本使用,包括里面的内部算法,算法的细粒度配置,还有我们自己如何实现我们自己的算法,主要还是一些基本使用的知识,还不会使用ribbon的小伙伴可以回去看一下上一篇 ...

  5. VFP获取 SQL Server 的数据表、触发器、存储过程、视图等脚本

    本文代码转载自红雨先生 *-----------------------------------------------* SqlServer 相关函数*----------------------- ...

  6. [译]课程 3: 更多关于 Jobs 和 JobsDetails

    译者注: 目录在这 [译]Quartz.NET 3.x 教程 译者注: 原文在这 Lesson 3: More About Jobs & JobDetails 正如你在 课程 2 中看到的, ...

  7. Django使用 djcelery时报ImportError: No module named south.db错误

    这时候可能是安装的Django-celery.celery的版本过低引起的,可以到pycharm查看推荐的版本,把版本更换到的推荐的版本就解决了

  8. C语言三 语句练习

    输入一个整数day代表星期几,根据day的值输出对应的星期几,比如day==1,就输出“星期一”(用两种方式实现) int Day; printf("请输入一个1~7的数字"); ...

  9. js this是什么?[多次书写]

    前言 以前的时候,我写了一个关于js this的博客,写的非常复杂,分析了各种情况. 现在我想简化. 如果你有后台基础,专门去理解过this,那么请忘记. 这东西是有口诀的: 在方法中,this 表示 ...

  10. 多线程共享变量和 AsyncLocal

    >>返回<C# 并发编程> 1. 简介 2. 异步下的共享变量 3. 解析 AsyncLocal 3.1. IAsyncLocalValueMap 的实现 3.2. 结论 1. ...