官方教程

NetworkX是一个创建,操作,研究复杂网络的结构,动态,功能的python包。

#创建一个network
import networkx as nx
G = nx.Graph()
#nodes
import networkx as nx
G = nx.Graph()
'''
在networkx中,nodes可以是任何能够hash的对象,
例如a text string,an image,an XML object,another Graph,a customized node object等等''' G.add_node(11)
G.add_nodes_from([12, 13])
print(G.nodes()) H = nx.path_graph(10)
G.add_nodes_from(H)
G.add_node(H)
print(G.nodes()) '''
输出:
[11, 12, 13]
[11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, <networkx.classes.graph.Graph object at 0x00000000021C8828>] G可以将H中的node作为自己的node,也可以将H单独作为一个node'''

添加edges

import networkx as nx
G = nx.Graph() '''G.add_edge(1, 2)
e = (2, 3)
G.add_edge(*e)
G.add_edges_from([(4, 5), (6, 7)])''' '''
adding any ebunch of edges. An ebunch is any iterable container of edge-tuples.
An edge-tuple can be a 2-tuple of nodes or a 3-tuple with
2 nodes followed by an edge attribute dictionary, e.g., (2, 3, {'weight': 3.1415})'''
H = nx.path_graph(10)
G.add_edges_from(H.edges()) print(G.nodes())
print(G.edges())
print(G.number_of_edges())
print(G.number_of_nodes())
'''
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
9
10
'''
print('..............')
print(list(G.adj[1]))
print(G.neighbors(1))
print(G.degree(1))
'''
输出:
[0, 2]
[0, 2]
2
''' print(G.edges([2, 5]))
print(G.degree([2, 3]))
'''
输出:
[(2, 1), (2, 3), (5, 4), (5, 6)]
{2: 2, 3: 2}
''' G.remove_node(2)
G.remove_edge(6, 7) print(G.nodes())
print(G.edges())
'''
输出:
[0, 1, 3, 4, 5, 6, 7, 8, 9]
[(0, 1), (3, 4), (4, 5), (5, 6), (7, 8), (8, 9)]
''' G.add_edge(6, 7)
H = nx.DiGraph(G)
print(H.edges())
'''
[(0, 1), (1, 0), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5), (6, 7), (7, 8), (7, 6), (8, 7), (8, 9), (9, 8)]
''' edgelist = [(0, 1), (2, 3), (4, 5)]
H = nx.Graph(edgelist)
print(H.edges())
'''
[(0, 1), (2, 3), (4, 5)]
'''
访问edges或neighbors:
#访问edges或neighbors
import networkx as nx
G = nx.Graph() H = nx.path_graph(7)
G.add_edges_from(H.edges()) print('G.nodes()为:', G.nodes())
print('G.edges()为:', G.edges())
'''
G.nodes()为: [0, 1, 2, 3, 4, 5, 6]
G.edges()为: [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
''' print('...............')
print('G[1]为:', G[1])
print('G[1][2]为:', G[1][2])
'''
G[1]为: {0: {}, 2: {}}
G[1][2]为: {}
''' G.add_edge(1, 3)
G[1][3]['color'] = 'blue'
G[1][3]['size'] = 22 print('...............')
print('G[1]为:', G[1])
print('G[1][3]为:', G[1][3])
'''
G[1]为: {0: {}, 2: {}, 3: {'color': 'blue', 'size': 22}}
G[1][3]为: {'color': 'blue', 'size': 22}''' print('...................')
print('G.adj.items()为: ', G.adj.items())
print('G.adjacency_list()为: ',G.adjacency_list())
print('G.adjlist_dict_factory为: ', G.adjlist_dict_factory)
'''
G.adj.items()为: dict_items([(0, {1: {}}), (1, {0: {}, 2: {}, 3: {'color': 'blue', 'size': 22}}), (2, {1: {}, 3: {}}), (3, {2: {}, 4: {}, 1: {'color': 'blue', 'size': 22}}), (4, {3: {}, 5: {}}), (5, {4: {}, 6: {}}), (6, {5: {}})])
G.adjacency_list()为: [[1], [0, 2, 3], [1, 3], [2, 4, 1], [3, 5], [4, 6], [5]]
G.adjlist_dict_factory为: <class 'dict'>
''' print('..........................')
FG = nx.Graph()
FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)])
for n,nbrs in FG.adj.items():
for nbr, edgeAttr in nbrs.items():
wt = edgeAttr['weight']
if wt < 0.5:
print('(%d, %d, %.3f)' % (n, nbr, wt))
'''
(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)
'''

为graphs,nodes,edges添加属性

#Adding attributes to graphs, nodes, and edges
#任何python object比如weights,labels,colors都可以作为graphs,nodes,edges的属性 '''Graph attributes'''
import networkx as nx
G = nx.Graph(day='Friday')
print(G.graph)
#{'day': 'Friday'} #modify attributes
G.graph['day'] = "monday"
print(G.graph)
#{'day': 'monday'} '''Node attributes'''
#用add_node(),add_nodes_from()或G.nodes为node添加属性
G.add_node(1, time='11am')
G.add_nodes_from([3],time='2pm') print(G.node[1])
#{'time': '11am'}
G.node[1]['room'] = 714
print(G.node)
#{1: {'time': '11am', 'room': 714}, 3: {'time': '2pm'}} '''Edge Attributes'''
#用add_edge(), add_edges_from(),或下标来为edge添加或修改属性
G.add_edge(1, 2, weight=4.5)
G.add_edges_from([(3, 4),(4, 5)], color='red')
G.add_edges_from([(1, 2,{'color':'blue'}),(2, 3,{'weight':8})]) G[1][2]['weight'] = 7878
G.edge[1][2]['color'] = 'wetuweywiu'
print(G.edge)
'''
{1: {2: {'weight': 7878, 'color': 'wetuweywiu'}}, 3: {4: {'color': 'red'}, 2: {'weight': 8}}, 2: {1: {'weight': 7878, 'color': 'wetuweywiu'}, 3: {'weight': 8}},
4: {3: {'color': 'red'}, 5: {'color': 'red'}}, 5: {4: {'color': 'red'}}}
'''
print(G.edges())
#[(1, 2), (3, 4), (3, 2), (4, 5)] print(G[1])#1的邻接node以及edge的属性
# {2: {'weight': 7878, 'color': 'wetuweywiu'}}
print(G[1][2])
#{'weight': 7878, 'color': 'wetuweywiu'}
print(G.edge[1][2])
#{'weight': 7878, 'color': 'wetuweywiu'} '''
总结:
访问node的具体属性,必须是G.node[u][attr], 而访问edge的具体属性可以是G.edge[u][v][attr]或G[u][v][attr]
G.node[u]:node u的所有属性, G.edge[u][v]或G[u][v]:边(u, v)的所有属性
G.node:所有点以及属性, G.edge:所有edge以及属性
'''

有向图:

import networkx as nx
DG = nx.DiGraph()
DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)])
print(DG.out_degree(1, weight='weight'))
#0.5
print(DG.in_degree(1, weight='weight'))
#0.75
print(DG.degree(1, weight='weight'))
#1.25
print(DG.successors(1))
#[2]
print(DG.neighbors(1))
#[2]
print(DG.out_edges(3))
#[(3, 1)]
print(DG.in_edges(2))
#[(1, 2)]
print(DG.predecessors(1))
[3]
'''
总结:
DiGraph.out_edges(), DiGraph.in_edges()
DiGraph.in_degree(), DiGraph.out_degree(),DiGraph.degree()
DiGraph.predecessors(),
DiGraph.successors()相当于DiGraph.neighbours()
''' H = nx.Graph(DG)#将有向图转化为无向图
print(H.edge)
# {1: {2: {'weight': 0.5}, 3: {'weight': 0.75}}, 2: {1: {'weight': 0.5}}, 3: {1: {'weight': 0.75}}} H1 = DG.to_undirected()
print(H1.edge)
#{1: {2: {'weight': 0.5}, 3: {'weight': 0.75}}, 2: {1: {'weight': 0.5}}, 3: {1: {'weight': 0.75}}}

MultiGraph:

任意一对nodes之间可以有多条边。边的属性不同
#任意一对nodes之间可以有多条边。边的属性不同
import networkx as nx
MG = nx.MultiGraph()
MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)]) print(MG.degree(weight='weight'))
#{1: 1.25, 2: 1.75, 3: 0.5} GG = nx.Graph()
for n, nbrs in MG.adj.items():
for nbr, edgeDict in nbrs.items():
minvalue = min([d['weight'] for d in edgeDict.values()])
GG.add_edge(n, nbr, weight=minvalue) print(nx.shortest_path(GG, 1, 3))
#[1, 2, 3] print(MG.adj.items())
#dict_items([(1, {2: {0: {'weight': 0.5}, 1: {'weight': 0.75}}}),
# (2, {1: {0: {'weight': 0.5}, 1: {'weight': 0.75}}, 3: {0: {'weight': 0.5}}}),
# (3, {2: {0: {'weight': 0.5}}})])

NetworkX包的更多相关文章

  1. python下的复杂网络编程包networkx的使用(摘抄)

    原文:http://blog.sciencenet.cn/home.php?mod=space&uid=404069&do=blog&classid=141080&vi ...

  2. 网络分析之networkx(转载)

    图的类型 Graph类是无向图的基类,无向图能有自己的属性或参数,不包含重边,允许有回路,节点可以是任何hash的python对象,节点和边可以保存key/value属性对.该类的构造函数为Graph ...

  3. python网络画图——networkX

    networkX tutorial 绘制基本网络图 用matplotlib绘制网络图 基本流程: 1. 导入networkx,matplotlib包 2. 建立网络 3. 绘制网络 nx.draw() ...

  4. Python 学习 第十六篇:networkx

    networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法.图是由顶点.边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系.顶点和边 ...

  5. 『Networkx』常用方法

    这是一个用于分析'图'结构的包,由于我只是用到了浅显的可视化功能,所以这个介绍会对其使用浅尝辄止. 解决matplotlib中文字体缺失问题, from pylab import mpl mpl.rc ...

  6. [译]学习IPython进行交互式计算和数据可视化(三)

    第二章 在本章中,我们将详细学习IPython相对以Python控制台带来的多种改进.特别的,我们将会进行下面的几个任务: 从IPython中使用系统shell以在shell和Python之间进行强大 ...

  7. 用python探索和分析网络数据

    Edited by Markdown Refered from: John Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart, ...

  8. OTU_Network&calc_otu

    # -*- coding: utf-8 -*- # __author__ = 'JieYap' from biocluster.agent import Agent from biocluster.t ...

  9. PageRank 算法-Google 如何给网页排名

    公号:码农充电站pro 主页:https://codeshellme.github.io 在互联网早期,随着网络上的网页逐渐增多,如何从海量网页中检索出我们想要的页面,变得非常的重要. 当时著名的雅虎 ...

随机推荐

  1. 「洛谷P1262」间谍网络 解题报告

    P1262 间谍网络 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意 ...

  2. 1090 危险品装箱 (25分)C语言

    集装箱运输货物时,我们必须特别小心,不能把不相容的货物装在一只箱子里.比如氧化剂绝对不能跟易燃液体同箱,否则很容易造成爆炸. 本题给定一张不相容物品的清单,需要你检查每一张集装箱货品清单,判断它们是否 ...

  3. 1038 统计同成绩学生 (20 分)C语言

    题目描述 本题要求读入N名学生的成绩,将获得某一给定分数的学生人数输出. 输入描述: 输入在第1行给出不超过105的正整数N,即学生总人数.随后1行给出N名学生的百分制整数成绩,中间以空格分隔.最后1 ...

  4. kubespy 用bash实现的k8s动态调试工具

    原文位于 https://github.com/huazhihao/kubespy/blob/master/implement-a-k8s-debug-plugin-in-bash.md 背景 Kub ...

  5. 关于redis分布式锁

    Lock 分布式锁 1.安全属性:互斥,不管任何时候,只有一个客户端能持有同一个锁. 2.效率属性A:不会死锁,最终一定会得到锁,就算一个持有锁的客户端宕掉或者发生网络分区. 3.效率属性B:容错,只 ...

  6. linux下大文件查询具体段内容

    有时候我们的文件比较大,比如几十G,甚至上百G.这么大的文件怎么查询呢? 有很多种方法都可以实现,这儿选择用 cat 这个命令实现. 先来看看 cat 的介绍 cat 有个对应的命令 tac,cat反 ...

  7. Ubuntu16安装NVIDIA驱动后重复登录 简单粗暴

    第一步 卸载所有NVIDIA的东西 第二步 开机,应该能进入默认驱动的桌面了,在设置里关闭开机密码,开机自动登录 第三步 安装英伟达驱动

  8. vue 项目路由跳转后显示不同的title

    1.在router/index.js的每个路由中配置title 2.在项目中运行命令 npm install vue-wechat-title --save 安装插件(在 package.json文件 ...

  9. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

  10. 洛谷 P1658 购物

    题目链接 题目描述 你就要去购物了,现在你手上有N种不同面值的硬币,每种硬币有无限多个.为了方便购物,你希望带尽量少的硬币,但要能组合出1到X之间的任意值. 题目分析 题目要求组合出1到X之间的任意值 ...