NMI计算
NMI计算
NMI(Normalized Mutual Information)标准化互信息,常用在聚类中,度量两个聚类结果的相近程度。是社区发现(community detection)的重要衡量指标,基本可以比较客观地评价出一个社区划分与标准划分之间相比的准确度。NMI的值域是0到1,越高代表划分得越准。
# -*- coding:utf-8 -*-
'''
Created on 2017年10月28日 @summary: 利用Python实现NMI计算 @author: dreamhome
'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
#样本点数
total = len(A)
A_ids = set(A)
B_ids = set(B)
#互信息计算
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# 标准化互信息
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3])
B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3])
print NMI(A,B)
print metrics.normalized_mutual_info_score(A,B) 原文:https://blog.csdn.net/DreamHome_S/article/details/78379635
# coding=utf-8
import numpy as np
import math
def NMI(A,B):
# len(A) should be equal to len(B)
total = len(A)
A_ids = set(A)
B_ids = set(B)
#Mutual information
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# Normalized Mutual information
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3])
B = np.array([1,2,1,1,1,1,1,2,2,2,2,3,1,1,3,3,3])
print (NMI(A,B))
网上找到的代码
结果:0.36456
自己编写了一个,同时做了排序处理
# coding=utf-8
import numpy as np
import math
import operator def NMI(A,B):
# len(A) should be equal to len(B)
total = len(A)
A_ids = set(A)
B_ids = set(B)
#Mutual information
MI = 0
eps = 1.4e-45
for idA in A_ids:
for idB in B_ids:
idAOccur = np.where(A==idA)
idBOccur = np.where(B==idB)
idABOccur = np.intersect1d(idAOccur,idBOccur)
px = 1.0*len(idAOccur[0])/total
py = 1.0*len(idBOccur[0])/total
pxy = 1.0*len(idABOccur)/total
MI = MI + pxy*math.log(pxy/(px*py)+eps,2)
# Normalized Mutual information
Hx = 0
for idA in A_ids:
idAOccurCount = 1.0*len(np.where(A==idA)[0])
Hx = Hx - (idAOccurCount/total)*math.log(idAOccurCount/total+eps,2)
Hy = 0
for idB in B_ids:
idBOccurCount = 1.0*len(np.where(B==idB)[0])
Hy = Hy - (idBOccurCount/total)*math.log(idBOccurCount/total+eps,2)
MIhat = 2.0*MI/(Hx+Hy)
return MIhat if __name__ == '__main__':
A = np.array([1,1,1])
B = np.array([2,3,4])
C = np.array([1,1,6])
print(NMI(A,B))
m=[]#包含了位置的互信息
n=[]#只有互信息
dic={}
q=1
m.append(NMI(A,B))
m.append(NMI(B,C))
m.append(NMI(A,C)) for i in m:
dic['第{}个互信息'.format(q)]='{}'.format(i)
q=q+1
print(dic)
rankdata=sorted(dic.items(),key=operator.itemgetter(1),reverse=True)
print(rankdata)
实验结果如图
NMI计算的更多相关文章
- 前端极易被误导的css选择器权重计算及css内联样式的妙用技巧
记得大学时候,专业课的网页设计书籍里面讲过css选择器权重的计算:id是100,class是10,html标签是5等等,然后全部加起来的和进行比较... 我只想说:真是误人子弟,害人不浅! 最近,在前 ...
- 分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间)
分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间) 很多时候我们都需要计算数据库中各个表的数据量和每行记录所占用空间 这里共享一个脚本 CREATE TABLE #tab ...
- C语言 · 薪水计算
问题描述 编写一个程序,计算员工的周薪.薪水的计算是以小时为单位,如果在一周的时间内,员工工作的时间不超过40 个小时,那么他/她的总收入等于工作时间乘以每小时的薪水.如果员工工作的时间在40 到50 ...
- C语言 · 阶乘计算 · 基础练习
问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*-*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个大整数a,A[0]表 ...
- C语言 · 最大值与最小值计算
输入11个整数,计算它们的最大值和最小值. 样例输入 0 1 2 3 4 5 6 7 8 9 10 样例输出 10 0 #include<stdio.h> int main(){ ]; ...
- 无法向会话状态服务器发出会话状态请求。请确保 ASP.NET State Service (ASP.NET 状态服务)已启动,并且客户端端口与服务器端口相同。如果服务器位于远程计算机上,请检查。。。
异常处理汇总-服 务 器 http://www.cnblogs.com/dunitian/p/4522983.html 无法向会话状态服务器发出会话状态请求.请确保 ASP.NET State Ser ...
- SQL Server-聚焦计算列或计算列持久化查询性能(二十二)
前言 上一节我们详细讲解了计算列以及计算列持久化的问题,本节我们依然如前面讲解来看看二者查询性能问题,简短的内容,深入的理解,Always to review the basics. 持久化计算列比非 ...
- SQL Server-聚焦计算列持久化(二十一)
前言 上一节我们结束了Hash Match Aggregate和Stream Aggregate的讲解,本系列我们来讲讲关于SQL Server中的计算列问题,简短的内容,深入的理解,Always t ...
- javascript:逆波兰式表示法计算表达式结果
逆波兰式表示法,是由栈做基础的表达式,举个例子: 5 1 2 + 4 * + 3 - 等价于 5 + ((1 + 2) * 4) - 3 原理:依次将5 1 2 压入栈中, 这时遇到了运算符 + ...
随机推荐
- Activiti工作流引擎学习(一)
1.部署对象和流程定义相关表:RepositoryService act_re_deployment: 部署对象表:一次部署的多个文件的信息,对于不需要的流程可以删除和修改 act_re_procde ...
- <mvc:annotation-driven /><context:annotation-config/><context:component-scan/>
<context:annotation-config/> 隐式地向 Spring容器注册AutowiredAnnotationBeanPostProcessor. RequiredAnno ...
- Linux 内核总线方法
有几个给 bus_type 结构定义的方法; 它们允许总线代码作为一个设备核心和单独驱动之 间的中介. 在 2.6.10 内核中定义的方法是: int (*match)(struct device * ...
- es6笔记 day1---let和const的应用
ES6 -> ECMA标准 ES7 ES8 最早是由ECMA-262版本实现的 ---------------------------------------- ES6 也称为ES2015,2 ...
- selenium经过WebDriverWait实现ajax测试
当前位置:我的异常网» Web前端 » selenium经过WebDriverWait实现ajax测试 selenium经过WebDriverWait实现ajax测试 www.MyException. ...
- geoip ip2region2 with spark
上一篇文章中 我使用 maxmind的免费库开发了一个waterdrop的 插件,测试数据发现,国内的有些市级还是不准确,而且香港并不是显示中国,这就不友好了. 找了一下,发下 ip2region 这 ...
- 安卓中运行报错Error:Execution failed for task ':app:transformClassesWithDexForDebug'解决
在androidstuio中运行我的未完项目,报错: Error:Execution failed for task ':app:transformClassesWithDexForDebug'.&g ...
- CentOS 下 jenkins 安装
前置条件 jdk 和 maven 都配置好的环境,不赘述. 下载安装文件 选择一个 rpm 包 http://pkg.jenkins-ci.org/redhat/ 完成后执行命令 sudo rpm - ...
- $CF559C\ Gerald\ and\ Fiant\ Chess$ 计数类$DP$
AcWing Description 有个$H$行$W$列的棋盘,里面有$N$个黑色格子,求一个棋子由左上方格子走到右下方格子且不经过黑色格子的方案数. $1<=H,M<=1e5,1< ...
- BuilderPattern(建造者模式)-----Java/.Net
建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式