题目链接:https://www.luogu.org/problemnew/show/P1247

题意:nim取石子的题意,多了一个判断先手赢的话,输出先手第一把怎么拿,以及拿完之后每堆还剩多少。

题解:异或和为0直接lose。不为0的话,看res xor a[i]的值如果小于a[i]说明可以取该堆,也就是取a[i] - (res xor a[i])这么多。剩余的就是res xor a[i]。

证明。。洛谷题解的大佬写的挺好的。。QAQ

代码:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define ll long long
const int maxn = ; int n,m,x;
int a[maxn]; void nim(){
cin>>n;
int res = ;
for(int i = ; i<= n; i++){
cin>>a[i];
res ^= a[i];
}
if(res == ){
cout<<"lose"<<endl;
}
else{
//cout<<res<<endl;
for(int i = ; i <= n; i++){
if((a[i]^res) < a[i]){
cout<<(a[i] - (a[i]^res))<<" "<<i<<endl;
a[i] ^= res;
break;
}
}
for(int i = ; i <= n; i++){
cout<<a[i]<<" ";
}
cout<<endl; }
} int main(){
nim();
return ;
}

【洛谷】P1247取火柴游戏的更多相关文章

  1. 洛谷P1247取火柴游戏

    题目:https://www.luogu.org/problemnew/show/P1247 可以知道必败局面为n[1]^n[2]^...^n[k]=x=0: 而若x不等于0,则一定可以取一次使其变为 ...

  2. 洛谷P1247 取火柴游戏

    经典NIM游戏. 取XOR和即可. 注意输出方案时,找到大于异或和sum的,变为a[i] ^ sum即可. #include <cstdio> ; int a[N]; int main() ...

  3. 洛谷 P1247 取火柴游戏

    题目传送门 暴力 \((\)由于我这样的初中蒟蒻不\((bu)\)喜\((hui)\)欢\((xie)\)数学证明,所以题解中的证明全是其他大佬的题解已经多次证明过的,这里就不再啰嗦了.\()\) - ...

  4. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  5. P1247 取火柴游戏

    题目描述 输入k及k个整数n1,n2,-,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不 ...

  6. 洛谷——P1123 取数游戏

    P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...

  7. 洛谷——P2252 取石子游戏

    P2252 取石子游戏 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  8. 【洛谷】P1247 取火柴游戏(Nim)

    题目 传送门:QWQ 分析 蒟蒻根本不会博弈论..... 只知道异或和判断Nim游戏.. 不是很懂输出的选择,所以发一篇博客以待复习 代码 #include <bits/stdc++.h> ...

  9. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

随机推荐

  1. Java继承方法隐藏(覆盖)

    方法隐藏 一个类从其超类继承所有非私有静态方法.在子类中重新定义继承的静态方法称为方法隐藏.子类中的重定义静态方法隐藏其超类的静态方法.在类中重定义非静态方法称为方法覆盖.关于方法隐藏的重定义方法(名 ...

  2. 转 python3 读取 ini配置文件

    在代码中经常会通过ini文件来配置一些常修改的配置.下面通过一个实例来看下如何写入.读取ini配置文件. 需要的配置文件是: 1 [path] 2 back_dir = /Users/abc/Pych ...

  3. JPA派生标识符2

    @Entity@Table(name = "adam_importfile")@IdClass(BusinessAdviserFileId.class)public class B ...

  4. 常用命令--awk

    awk '{ BEGIN{stat1} BEGIN{stat2} pattern1{action1} pattern2{action2} ... patternn{actionn} {默认动作,无条件 ...

  5. Maven远程仓库地址

    https://repo1.maven.org/maven2/ http://maven.jahia.org/maven2/ http://maven.aliyun.com/nexus/content ...

  6. 将rdlc报表作为资源嵌套使用

    原文:将rdlc报表作为资源嵌套使用 如果我们准备在Windows Forms里面使用rdlc报表,那么会遇到一个问题:rdlc报表到底要不要作为附属文件的方式随程序发布? 这样做的优点是:报表可以后 ...

  7. shell变量的间接引用

  8. 单实例安装elastic和启动报错解决

    下载 先到官网https://www.elastic.co/cn/downloads/past-releases/elasticsearch-5-5-2下载,我安装的是5.5.2的版本,其他版本直接访 ...

  9. 小白的第一篇python博客

    学习python课程三天,先了解了计算机的历史及各种发展史,python的历史及部分语法,python主要学习内容有"hello world",int常量.str字符串,print ...

  10. Django之template操作

    一.模板渲染的原理 (一)使用 模板渲染首先有一个模板对象Template,然后有一个上下文对象Context,通过render方法进行渲染,最后返回字符串,render方法的本质还是调用了HttpR ...