Heavy-light Decompositions Problem Code: HLDOTSSubmit

All submissions for this problem are available.

Heavy-light decomposition of a tree is a powerful tool that often helps in the most difficult tree data structure problems.

Heavy-light decomposition is to be built on a rooted tree. In this problem, the node with the number 1 should be considered the root of a tree. Heavy light decomposition is a colouring of edges of the tree. Each edge is either heavy or light. For each non leaf node (node having degree greater than 1), from all the edges emanating from it into the subtree rooted at this vertex should have exactly one heavy edge.

The heavy-light decomposition is called correct, if you can reach any node from the root node by using no more that ⌊ log2 N ⌋ light edges, where N is the number of nodes in the tree.

Given a tree, calculate the number of its' correct heavy-light decompositions. As answer could be very large, please print it modulo 19101995.

Input

There is exactly one test case.

The first line of input consists of a single integer N, denoting the number of the nodes in the tree.

Each of the following N - 1 lines contains a pair of integers, denoting the numbers of the nodes that are connected with an edge. The nodes are enumerated by positive integers in the range [1; N].

Output

Output the number of correct heavy-light decompositions of the given tree. Since this number can be huge, please output it modulo 19101995.

Constraints

  • (Subtask 1): 1 ≤ N ≤ 20 - 21 point.
  • (Subtask 2): 1 ≤ N ≤ 1000 - 34 points.
  • (Subtask 3): 1 ≤ N ≤ 100000 - 45 points.

Example

Input:
7
1 2
3 1
3 4
3 5
2 6
2 7 Output:
8

Explanation

Example case 1. Input is a complete binary tree. It consists of 7 nodes, therefore you can't have more than ⌊log2 7⌋ = ⌊(2.80735492206)⌋ = 2 light edges on the path from the root node to any other one. But the tree's height is 2, so you can choose the decomposition in any way you like. All the decompositions will be correct ones. There are three nodes that has outgoing edges from them (in the direction opposite to the root's one), their numbers are 1, 2 and 3. Each of them has 2 outgoing edges from which you can colour exactly one of them heavy, so overall you'll have 2 * 2 * 2 = 8 options of creating the correct heavy-light decompositions.

 
 
题意:求从根到任意节点经过的轻链的个数不超过$log_2n$的轻重链划分的方案数。
一个树dp。
由于模数是一个合数,所以不能直接用快速幂求逆元,可以用改用前缀后缀和做。
f是前缀和,g是后缀和。
注意没有儿子(叶子)和只有一个儿子的特殊情况。
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const long long maxn=1e5+10,mod=19101995;
long long n,f[maxn][20],g[maxn][20],ans[maxn][20],fa[maxn],sz,fr[2*maxn]; long long aa;char cc;
long long read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} long long fir[maxn],nxt[2*maxn],to[2*maxn],e=0;
void add(long long x,long long y) {
to[++e]=y;nxt[e]=fir[x];fir[x]=e;
to[++e]=x;nxt[e]=fir[y];fir[y]=e;
} long long rs;
long long qp(long long x,long long k) {
rs=1;if(x<=1) return x;
while(k) {
if(k&1) (rs*=x)%=mod;
x=x*x%mod;k>>=1;
}
return rs;
} void dfs(long long pos) {
long long z,tt=0,tot;
for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue;
fa[z]=pos; dfs(z);
}
for(long long i=0;i<=sz;++i) f[0][i]=1ll;
for(long long y=fir[pos];y;fr[nxt[y]]=y,y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=0;i<=sz;++i) (f[tt][i]=f[tt-1][i]*ans[z][i])%=mod;
}
tot=tt;
for(long long i=0;i<=sz;++i) g[tt][i]=1ll;
fr[fir[pos]]=0;
for(long long y=fr[0];y;y=fr[y]) {
if((z=to[y])==fa[pos]) continue; tt--;
for(long long i=0;i<=sz;++i) (g[tt][i]=g[tt+1][i]*ans[z][i])%=mod;
}
if(tot>1) for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=1;i<=sz;++i) (ans[pos][i]+=f[tt-1][i-1]*g[tt][i-1]%mod*ans[z][i])%=mod;
}
else if(!tot)for(long long i=0;i<=sz;++i) ans[pos][i]=1;
else {
if(to[fr[0]]==fa[pos]) fr[0]=fr[fr[0]];
for(long long i=0;i<=sz;++i) ans[pos][i]=ans[to[fr[0]]][i];
}
} int main() {
n=read();long long x,y;
sz=(long long)((double)log(n)/(double)log(2)+1e-8);
for(long long i=1;i<n;++i) {
x=read();y=read();
add(x,y);
}
dfs(1);
printf("%lld",ans[1][sz]);
return 0;
}
/*
7
1 2
3 2
4 3
5 1
6 2
7 3 right answer:
6
*/

  

对拍的rand:

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<ctime>
using namespace std;
const int maxn=15;
int n; int main() {
srand((unsigned)time(NULL));
n=rand()%maxn+2;int x;
printf("%d\n1 2\n",n);
for(int i=3;i<=n;++i) {
x=rand()%(i-1)+1;
printf("%d %d\n",i,x);
}
return 0;
}

  

codechef Heavy-light Decompositions的更多相关文章

  1. Heavy Light Decomposition

    Note 1.DFS1 mark all the depth mark fathers mark the heavy/light children mark the size of each subt ...

  2. 树链剖分I 原理

    树链剖分(Heavy Light Decomposition, HLD)是一种将对[树上两点间的路径]上[边或点]的[修改与查询]转化到[序列]上来处理的方法. 目的:将树的边或点转化到一个线性结构( ...

  3. ACM/ICPC 之 拓扑排序-反向(POJ3687)

    难点依旧是题意....需要反向构图+去重+看题 POJ3687-Labeling Balls 题意:1-N编号的球,输出满足给定约束的按原编号排列的重量序列,如果有多组答案,则输出编号最小的Ball重 ...

  4. poj1013

    题目大意:假造的银币 Sally Jones有一些游客给的银币,但是只有11枚是真正的银币(有一枚是假的),从颜色和大小是无法区分真比还是假币的,但是它的重量和真币是不同的,Sally Jones它是 ...

  5. Java8 in action(1) 通过行为参数化传递代码--lambda代替策略模式

    [TOC] 猪脚:以下内容参考<Java 8 in Action> 需求 果农需要筛选苹果,可能想要绿色的,也可能想要红色的,可能想要大苹果(>150g),也可能需要红的大苹果.基于 ...

  6. TCP与UDP区别小结

    TCP(Transmission Control Protocol):传输控制协议 UDP(User Datagram Protocol):用户数据报协议       主要从连接性(Connectiv ...

  7. POJ1013 称硬币

    题目链接:http://poj.org/problem?id=1013 题目大意 有12枚硬币.其中有11枚真币和1枚假币.假币和真币重量不同,但不知道假币比真币轻还是重.现在,用一架天平称了这些币三 ...

  8. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  9. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

随机推荐

  1. nginx 访问ssl 的 pem 遇到的权限问题

    nginx 开启失败,日志记录 访问 ssl 的 pem 文件  fopen:Permission denied 权限问题,查看文件权限,目录权限,正常. google 后得知原来是一个 SELinu ...

  2. PAT甲级——A1013 Battle Over Cities

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  3. Consul3-使用consul作为配置中心

    在前面的文章中学习了consul在windows下的安装配置,然后consul作为spring boot的服务发现和注册中心,详细的参考: https://blog.csdn.net/j9038291 ...

  4. 跟我一起写一个chrome扩展程序

    在我没有看这本书之前,我都想象不到,原来chrome扩展程序可以这样写,真的非常有意思. 就是用最简单最基础的代码,然后就实现了一些非常有意思的玩意儿. 先看效果图 实际运用要和现实联系在一起,经历和 ...

  5. Effective Modern C++  条款1:理解模板型别推导

    成百上千的程序员都在向函数模板传递实参,并拿到了完全满意的结果,而这些程序员中却有很多对这些函数使用的型别是如何被推导出的过程连最模糊的描述都讲不出来. 但是当模板型别推导规则应用于auto语境时,它 ...

  6. http://codeforces.com/gym/100623/attachments H题

    http://codeforces.com/gym/100623/attachments H题已经给出来的,包括后来添加的,都累加得到ans,那么从1-ans都是可以凑出来的,如果ans<a[n ...

  7. git与github建立链接(学习笔记)

    总结步骤: 1.将所有文件添加到本库 git add . 2. git commit -m "提示信息随便写" 3.查看git修改状态 git status 4.获取远程库与本地同 ...

  8. 20190811-Recover

    好点了. 恍惚中,是她么? 考试前,我感觉很差. 考试频繁于我改题速度. 考试过程: 首先通看三题,太棒了,没有tenggang了 T1,前缀和(我终于提升了??) T2,明显不会,但是我想用贪心, ...

  9. 核K-均值聚类(Kernel K-means Clustering)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/wxcdzhangping/article/details/31366143 问题:        设 ...

  10. nginx源码分析线程池详解

    nginx源码分析线程池详解 一.前言     nginx是采用多进程模型,master和worker之间主要通过pipe管道的方式进行通信,多进程的优势就在于各个进程互不影响.但是经常会有人问道,n ...