【AT3611】Tree MST
这个题的输入首先就是一棵树,我们考虑一下点分
我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况
就是把当前分治区域内所有的点向距离分治重心最近的点连边
考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并
如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了
所以这个点分的过程就相当于合并\(mst\)的过程
我们点分之后发现我们连了大概\(nlogn\)条边,于是再跑一个kruskal就好了,复杂度\(O(nlog^2n)\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
struct Edge{int a,b;LL c;}E[maxn*55];
int sum[maxn],vis[maxn],head[maxn],mx[maxn],a[maxn],fa[maxn],sz[maxn];
int n,num,m,dx,S,rt;LL dw,ans,pre[maxn];
inline void add(int x,int y,int z) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;
}
void getroot(int x,int fa) {
sum[x]=1,mx[x]=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getroot(e[i].v,x);sum[x]+=sum[e[i].v];
mx[x]=max(mx[x],sum[e[i].v]);
}
mx[x]=max(mx[x],S-sum[x]);
if(mx[x]<mx[rt]) rt=x;
}
void getdis(int x,int fa) {
E[++m]=(Edge){dx,x,pre[x]+a[x]+dw};
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getdis(e[i].v,x);
}
}
void chk(int x,int fa) {
if(pre[x]+a[x]<dw) dw=pre[x]+a[x],dx=x;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;chk(e[i].v,x);
}
}
void dfs(int x) {
dx=x,dw=a[x];vis[x]=1;pre[x]=0,chk(x,0),getdis(x,0);
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
S=sum[e[i].v],rt=0,getroot(e[i].v,0),dfs(rt);
}
}
inline int cmp(Edge A,Edge B) {return A.c<B.c;}
inline int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int merge(int x,int y) {
int xx=find(x),yy=find(y);
if(xx==yy) return 0;
if(sz[xx]<sz[yy]) fa[xx]=yy,sz[yy]+=sz[xx];
else fa[yy]=xx,sz[xx]+=sz[yy];
return 1;
}
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int x,y,z,i=1;i<n;i++)
x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
mx[0]=n+1,S=n,rt=0,getroot(1,0),dfs(rt);
std::sort(E+1,E+m+1,cmp);
for(re int i=1;i<=n;i++) sz[i]=1,fa[i]=i;
for(re int i=1;i<=m;i++) if(merge(E[i].a,E[i].b)) ans+=E[i].c;
std::cout<<ans;
return 0;
}
【AT3611】Tree MST的更多相关文章
- 【AtCoder3611】Tree MST(点分治,最小生成树)
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
- 【Luogu1501】Tree(Link-Cut Tree)
[Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...
- 【BZOJ3282】Tree (Link-Cut Tree)
[BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...
- 【AtCoder2134】ZigZag MST(最小生成树)
[AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...
- 【HDU5909】Tree Cutting(FWT)
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【POJ1741】Tree(点分治)
[POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...
随机推荐
- EasyUI - 简介
1. EasyUI : 简单的界面设计框架, 基于jQuery的UI插件, 主要用来设计网站的后台管理系统 2. EasyUI使用 : 将EasyUI提供的js文件和主题(themes)样式存放到项目 ...
- sublime上插件的安装与使用
1.插件安装的方式 插件安装方式一:直接安装 下载插件安装包后,把安装包解压到packages目录(菜单->首选项->浏览插件目录)中,完成安装 插件安装方法二:使用package con ...
- Dll注入技术之APC注入
APC注入的原理是利用当线程被唤醒时APC中的注册函数会被执行的机制,并以此去执行我们的DLL加载代码,进而完成DLL注入的目的,其具体流程如下: 1)当EXE里某个线程执行到SleepEx( ...
- BAT大神推荐:看懂英文文档,每天只需要10分钟做这件事……
程序员这个行业是很特殊的.之所以说特殊,就是因为它所有的技术大多来自欧美,所以最主流,最新鲜,最正确的技术文章都是英文,遗憾的是,大部分还没有译本. 有些译文还比较差.与其等待别人的翻译,不如直接阅读 ...
- JAVA利用JXL导出 EXCEL (在原有的excel模板上把数据导到excel上)
添加依赖 <dependency> <groupId>net.sourceforge.jexcelapi</groupId> <artifactId>j ...
- delphi 实现最小化系统托盘(rz控件最简单 评论)
1.new -->application 2.在form1中加入一个tPopMenu 命名为pm1 3.uses ShellAPI; 4.定义一个常量在 const WM_TRAYMSG = W ...
- python学习4—数据结构之列表、元组与字典
python学习4—数据结构之列表.元组与字典 列表(list)深灰魔法 1. 连续索引 li = [1,1,[1,["asdsa",4]]] li[2][1][1][0] 2. ...
- java-day15
File类 文件和目录路径名的抽象表示,主要用于文件和目录的创建.查找和删除等操作 静态成员 static String pathSeparator 路径分隔符 File.pathSeparator ...
- MVC 传递数据 从前台到后台,包括单个对象,多个对象,集合
MVC 传递数据 从前台到后台,包括单个对象,多个对象,集合 1.基本数据类型 我们常见有传递 int, string, bool, double, decimal 等类型. 需要注意的是前台传递的参 ...
- Spark中的各种action算子操作(java版)
在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子.transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有 ...