题目

这个题的输入首先就是一棵树,我们考虑一下点分

我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况

就是把当前分治区域内所有的点向距离分治重心最近的点连边

考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并

如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了

所以这个点分的过程就相当于合并\(mst\)的过程

我们点分之后发现我们连了大概\(nlogn\)条边,于是再跑一个kruskal就好了,复杂度\(O(nlog^2n)\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
struct Edge{int a,b;LL c;}E[maxn*55];
int sum[maxn],vis[maxn],head[maxn],mx[maxn],a[maxn],fa[maxn],sz[maxn];
int n,num,m,dx,S,rt;LL dw,ans,pre[maxn];
inline void add(int x,int y,int z) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;
}
void getroot(int x,int fa) {
sum[x]=1,mx[x]=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getroot(e[i].v,x);sum[x]+=sum[e[i].v];
mx[x]=max(mx[x],sum[e[i].v]);
}
mx[x]=max(mx[x],S-sum[x]);
if(mx[x]<mx[rt]) rt=x;
}
void getdis(int x,int fa) {
E[++m]=(Edge){dx,x,pre[x]+a[x]+dw};
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getdis(e[i].v,x);
}
}
void chk(int x,int fa) {
if(pre[x]+a[x]<dw) dw=pre[x]+a[x],dx=x;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;chk(e[i].v,x);
}
}
void dfs(int x) {
dx=x,dw=a[x];vis[x]=1;pre[x]=0,chk(x,0),getdis(x,0);
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
S=sum[e[i].v],rt=0,getroot(e[i].v,0),dfs(rt);
}
}
inline int cmp(Edge A,Edge B) {return A.c<B.c;}
inline int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
inline int merge(int x,int y) {
int xx=find(x),yy=find(y);
if(xx==yy) return 0;
if(sz[xx]<sz[yy]) fa[xx]=yy,sz[yy]+=sz[xx];
else fa[yy]=xx,sz[xx]+=sz[yy];
return 1;
}
int main() {
n=read();
for(re int i=1;i<=n;i++) a[i]=read();
for(re int x,y,z,i=1;i<n;i++)
x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
mx[0]=n+1,S=n,rt=0,getroot(1,0),dfs(rt);
std::sort(E+1,E+m+1,cmp);
for(re int i=1;i<=n;i++) sz[i]=1,fa[i]=i;
for(re int i=1;i<=m;i++) if(merge(E[i].a,E[i].b)) ans+=E[i].c;
std::cout<<ans;
return 0;
}

【AT3611】Tree MST的更多相关文章

  1. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  2. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  3. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  4. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  5. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  6. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  7. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  8. 【BZOJ2654】Tree(凸优化,最小生成树)

    [BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...

  9. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

随机推荐

  1. selenium 无头浏览器headless browser

    无头浏览器,即没有界面的浏览器,浏览器该有的功能特性都有. if browser.lower() == "chrome": # 无头浏览器 chrome_opt = webdriv ...

  2. JavaScript学习笔记之CSS-DOM

    HTML负责结构层,网页的结构层由HTML或者XHTML之类的标记语言负责构建 CSS负责表示层,描述页面内容应该如何呈现. JavaScript负责行为层,负责内容应该如何响应事件这一问题. 能利用 ...

  3. alert样式优化

    //alert样式优化 function alert(msg, mode) { //mode为空,即只有一个确认按钮,mode为1时有确认和取消两个按钮 msg = msg || ''; mode = ...

  4. Java语法清单-快速回顾(开发)

    Java CheatSheet 01.基础 hello,world! public static void main(String[] args) { System.out.println(" ...

  5. Delphi 2010下使用sqlitesimpledelphi连接SQLite数据库及中文乱码问题的解决

    应女朋友的要求,要写一款销售管理的软件.用于管理服装店每天的销售记录,已及管理服装店的客户,并对客户进行生日提醒 因为之前使用C#写过一款家庭管理软件,主要是自己用,所以使用了服务器型数据库MySQL ...

  6. 如何通过编程发现Java死锁

    本文由 ImportNew - rookie_sam 翻译自 Dzone.欢迎加入翻译小组.转载请见文末要求. 死锁是指,两个或多个动作一直在等待其他动作完成而使得所有动作都始终处在阻塞的状态.想要在 ...

  7. (转) mysql的分区技术 .

    转:http://blog.csdn.net/feihong247/article/details/8100960 一.概述 当 MySQL的总记录数超过了100万后,会出现性能的大幅度下降吗?答案是 ...

  8. NPAPI插件开发新手容易遇到的问题

    在网上找了一个npdemo的例子,编译了一下在FireFox运行正常,在Chrome下就是不行,也没任何提示. 折腾了好久,最后发现是rc文件 支持语言编码问题 NPAPI插件开发详细记录:用VS20 ...

  9. java执行顺序之深入理解clinit和init

    原文地址:https://blog.csdn.net/qq_36522306/article/details/80582758 前言: 最近研究了深入理解JVM这本书中的知识,对java中各部分执行的 ...

  10. USACO2004 cube stacking /// 带权并查集 oj1302

    题目大意: 以N ( 1 ≤ N ≤ 30,000 )个堆栈开始,每个堆栈包含一个单独的立方体.执行P(1≤ P ≤100,000)的操作. 有两种类型的操作:移动和计数. *在移动操作中,将 包含方 ...