有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态。要求第i行第j列的格子只能参与mi,j次交换。

Solution

一个点拆三份,入点,主点,出点

入点向主点连边,主点向出点连边,设该点允许的交换次数为 \(x\) ,根据以下规则确定

  • 若为初态点,则入边限流 \(x/2\),出边限流 \((x+1)/2\)

  • 若为末态点,则入边限流 \((x+1)/2\),出边限流 \(x/2\)

  • 否则,入边限流 \(x/2\),出边限流 \((x+1)/2\)

\(S \to\) 初态点,末态点 \(\to T\),容量 \(1\),费用 \(0\)

八连通相互连边,容量 \(\infty\),费用 \(1\)

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll long long
#define reset(x) memset(x,0,sizeof x)
#define reset3f(x) memset(x,0x3f,sizeof x)
const int N = 1005; namespace flow {
const int N = 100005;
const int M = 1000005;
const int inf = 1e+12;
struct Edge {
int p, c, w, nxt = -1;
} e[N];
int s, t, tans, ans, cost, ind, bus[N], qhead = 0, qtail = -1, qu[M],vis[N], dist[N]; void graph_link(int p, int q, int c, int w) {
e[ind].p = q;
e[ind].c = c;
e[ind].w = w;
e[ind].nxt = bus[p];
bus[p] = ind;
++ind;
}
void make(int p, int q, int c, int w) {
graph_link(p, q, c, w);
graph_link(q, p, 0, -w);
}
int dinic_spfa() {
qhead = 0;
qtail = -1;
memset(vis, 0x00, sizeof vis);
memset(dist, 0x3f, sizeof dist);
vis[s] = 1;
dist[s] = 0;
qu[++qtail] = s;
while (qtail >= qhead) {
int p = qu[qhead++];
vis[p] = 0;
for (int i = bus[p]; i != -1; i = e[i].nxt)
if (dist[e[i].p] > dist[p] + e[i].w && e[i].c > 0) {
dist[e[i].p] = dist[p] + e[i].w;
if (vis[e[i].p] == 0)
vis[e[i].p] = 1, qu[++qtail] = e[i].p;
}
}
return dist[t] < inf;
}
int dinic_dfs(int p, int lim) {
if (p == t)
return lim;
vis[p] = 1;
int ret = 0;
for (int i = bus[p]; i != -1; i = e[i].nxt) {
int q = e[i].p;
if (e[i].c > 0 && dist[q] == dist[p] + e[i].w && vis[q] == 0) {
int res = dinic_dfs(q, min(lim, e[i].c));
cost += res * e[i].w;
e[i].c -= res;
e[i ^ 1].c += res;
ret += res;
lim -= res;
if (lim == 0)
break;
}
}
return ret;
}
void solve(int _s,int _t) {
s=_s; t=_t;
while (dinic_spfa()) {
memset(vis, 0x00, sizeof vis);
ans += dinic_dfs(s, inf);
}
}
void init() {
memset(bus, 0xff, sizeof bus);
}
} int n,m;
char a[N][N],b[N][N],c[N][N]; int idIn(int i,int j) {
return i*m-m+j+2;
} int idMid(int i,int j) {
return 2ll + n*m + i*m-m+j;
} int idOut(int i,int j) {
return 2ll + 2*n*m + i*m-m+j;
} int check(int i,int j) {
if(i && j && i<=n && j<=m) return 1;
return 0;
} signed main() {
flow::init();
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i]+1;
for(int i=1;i<=n;i++) cin>>b[i]+1;
for(int i=1;i<=n;i++) cin>>c[i]+1;
int cnt=0,tot=0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(a[i][j]=='1') cnt++;
if(b[i][j]=='1') tot++;
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(a[i][j]=='1') flow::make(1,idMid(i,j),1,0);
if(b[i][j]=='1') flow::make(idMid(i,j),2,1,0);
int x=c[i][j]-'0';
if(a[i][j]=='1' && b[i][j]=='0') {
flow::make(idIn(i,j),idMid(i,j),x/2,0);
flow::make(idMid(i,j),idOut(i,j),(x+1)/2,0);
}
else if(a[i][j]=='0' && b[i][j]=='1') {
flow::make(idIn(i,j),idMid(i,j),(x+1)/2,0);
flow::make(idMid(i,j),idOut(i,j),x/2,0);
}
else {
flow::make(idIn(i,j),idMid(i,j),x/2,0);
flow::make(idMid(i,j),idOut(i,j),(x+1)/2,0);
}
for(int k=i-1;k<=i+1;k++) {
for(int l=j-1;l<=j+1;l++) {
if(i!=k || j!=l) {
if(check(k,l)) flow::make(idOut(i,j),idIn(k,l),99,1);
}
}
}
}
}
flow::solve(1,2);
if(flow::ans==cnt && cnt==tot) cout<<flow::cost;
else cout<<-1;
}

[CQOI2012] 交换棋子 - 费用流的更多相关文章

  1. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  2. BZOJ2668: [cqoi2012]交换棋子(费用流)

    Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...

  3. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

  4. [CQOI2012][bzoj2668] 交换棋子 [费用流]

    题面 传送门 思路 抖机灵 一开始看到这题我以为是棋盘模型-_-|| 然而现实是骨感的 后来我尝试使用插头dp来交换,然后又惨死 最后我不得不把目光转向那个总能化腐朽为神奇的算法:网络流 思维 我们要 ...

  5. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  6. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  7. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  8. BZOJ2668:[CQOI2012]交换棋子(费用流)

    题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...

  9. [luoguP3159] [CQOI2012]交换棋子(最小费用最大流)

    传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: ...

随机推荐

  1. clr via c# clr寄宿和AppDomain (一)

    1 clr寄宿-----.net framework在windows平台的顶部允许.者意味着.net framework必须用windows能理解的技术来构建.所有托管模块和程序集文件必须使用wind ...

  2. MySQL安装详细步骤(附迅雷下载链接)

    环境:windows10.64bit.mysql 8.0.19 迅雷下载链接8.0版本 https://cdn.mysql.com//Downloads/MySQLInstaller/mysql-in ...

  3. centos7下NAT模式下设置静态ip

    1.在虚拟网络编辑器下查看子网IP.子网掩码以及网关 2.在Linux系统中进入 /etc/sysconfig/network-scripts目录下,编辑ifcfg-ens33文件,改成下面的内容: ...

  4. python类详细说明、常用内置方法和self的作用

    一.类的定义 在Python中,一切皆对象,即便是类本身,也是一种type类型的特殊对象. class Person: def __init__(self, name, age): self.name ...

  5. 纪中12日T1 2307. 选择

    2307. 选择 (File IO): input:choose.in output:choose.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto Pr ...

  6. beego flash 数据

    flash 数据 这个 flash 与 Adobe/Macromedia Flash 没有任何关系.它主要用于在两个逻辑间传递临时数据,flash 中存放的所有数据会在紧接着的下一个逻辑中调用后清除. ...

  7. 配置 vim 过程中必须解决的问题

    网络问题 在使用 github 作为插件下载源的时候, 容易出现网络连接超时等错误 在使用 gitee 作为插件下载源的时候, 子模块可能会出现下载超时 解决方案有以下两个: 使用 VPN , 改善访 ...

  8. Python 一键安装全部依赖包

    使用 pip requirements.txt 用来记录项目所有的依赖包和版本号,只需要一个简单的 pip 命令就能完成. pip freeze > requirements.txt 生成的文件 ...

  9. Life is Strange:《奇异人生》

    “生活就是一个陌生人”

  10. 【database】oracle触发器基础

    一.oracle触发器基本语法 CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE | AFTER } {INSERT | DELETE | UPDATE ...