PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- Linux下使用Nginx
模拟tomcat集群 1.下载tomcat7,/usr/local下新建目录tomcat,将tomcat7剪切到/usr/local/tomcat wget http://mirror.bit.edu ...
- C#中的WinFrom技术实现串口通讯助手(附源码)
C#中的WinFrom技术实现串口通讯助手(附源码) 实现的功能: 1.实现自动加载可用串口. 2.打开串口,并且使用C#状态栏显示串口的状态. 3.实现了串口的接收数据和发送数据功能. 4.串口 ...
- 查看deepin操作系统版本命令
cat /proc/version cat /etc/debian_version cat /etc/os-release lsb_release -a uname -a uname -r sc ...
- springboot容器加载完毕执行某一个方法
问题: 最近做项目(项目使用的是springboot)的时候,数据库有一个配置参数表,每次都要查询数据库去做数据转换,这样每次查询数据库感觉不太友好,后来写了一个方法项目启动完成后立即执行此方法,将配 ...
- 让我们纯手写一个js继承吧
继承在前端逻辑操作中是比较常见的,今天我们就从零开始写一个js的继承方式 在es5中继承实质上是先创建子类的实例对象,然后再将父类的方法添加到this上Parent.call(this),在es6中则 ...
- disabled属性对form表单提交的影响
在form表单里,如果对input加入disabled="disabled"或disabled="true"等属性,form表单提交的时候,就不会传值到后台. ...
- Django---Django返回用户输入数据
前面写了关于HTML和Django结合的文章,通过视图与HTML结合,然后加上urls渲染返回给用户浏览器.很明显我们都能看到这些仅仅是静态HTML,那如何通过Django创建动态的HTML呢? 动态 ...
- springMVC三大组件、spring主要jar包、
一.springMVC三大组件 处理器映射器 RequestMappingHandlerMapping 处理器适配器 RequestMappingHandlerAdapter 视图解析器 Int ...
- KiKi's K-Number HDU - 2852 树状数组+二分
#include<iostream> #include<cstring> using namespace std; ; int tr[N]; int lowbit(int x) ...
- F. Moving Points
https://codeforces.com/contest/1311/problem/F 这是一道线段树类型的题: 可以用权值线段树或者树状数组来解: 所以,我们可以分为两部分,第一部分是计算出到当 ...