Problem: time series classification

shapelet-based method: two issues

1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.

2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.

They propose a shapelet learning model: triple shapelet networks.

the imbalance of shapelets in minority class and majority class, to address this issue:

they use category-level and sample-level shapelets to improve the performance.

classification is to find the best discriminating features.

Introduction:

Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.

1. calculate the distances of shapelets and use these distances as discriminative features for classification.

shapelet transformation: find the top-k shapelets in a single pass.

to address two issues:

1. imbalance features issue:

they learn both types of features: dataset-level features and category-specific features.

2. deformation issue:

Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.

Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.

Thinking about:

1. does this classification method is influenced by imbalanced datasets? and how?

whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?

PP: Triple-shapelet networks for time series classification的更多相关文章

  1. How to Use Convolutional Neural Networks for Time Series Classification

    How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...

  2. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  3. 不平衡数据下的机器学习方法简介 imbalanced time series classification

    imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...

  4. 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记

    论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...

  5. PP: Modeling extreme events in time series prediction

    KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...

  6. PP: Composite visual mapping for time series visualization

    However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...

  7. describe neural networks as a series of computational steps via a directed graph.

    https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...

  8. Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks

    用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...

  9. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

随机推荐

  1. UML之三、建模元素(2)

    本章继续介绍建模元素 https://blog.csdn.net/bit_kaki/article/details/78471760 1:边界 任何一个对象都有一个边界,外界只能通过这个边界来认识对象 ...

  2. MFC/QT 学习笔记(二)——MFC入门

    MFC以C++形式封装了Windows API //实践 编写MFC需要的头文件#include <afxwin.h> 程序执行流程: 实例化应用程序对象(有且只有一个) 执行程序入口函数 ...

  3. JS中函数的本质,定义、调用,以及函数的参数和返回值

    要用面向对象的方式去编程,而不要用面向过程的方式去编程 对象是各种类型的数据的集合,可以是数字.字符串.数组.函数.对象…… 对象中的内容以键值对方式进行存储 对象要赋值给一个变量 var cat={ ...

  4. centos的安装与配置,Linux下基本命令、权限控制,解压缩文件以及软件的安装与卸载

    centos安装与网络配置 关机:shutdown -h now 重启:shutdown -r now 或 reboot linux目录结构与操作命令 使用ls命令查看目录结构 目录查看: ls [- ...

  5. python文件操作汇总day7

    Python处理文件 文件操作分为读.写.修改,我们先从读开始学习 读文件 示例1: f = open(file='D:/工作日常/兼职白领学生空姐模特护士联系方式.txt',mode='r',enc ...

  6. 关于FrameLayout中覆盖的问题

    FrameLayout中xml文件中写在下方的控件会默认覆盖上方的控件,如图,我准备实现如下效果: 这时recyclerview就要写在前面 如果recyclerview写在下面就会覆盖掉我linea ...

  7. Qt中MySQL数据库的操作例程

    数据库连接不成功时,要将libmysql.dll放到C:\Qt\Qt5.11.0\5.11.0\mingw53_32\bin和C:\Qt\Qt5.11.0\5.11.0\msvc2017_64\bin ...

  8. nunjucks如何使用?

    基本的使用 const nunjucks = require('nunjucks') // nunjucks.configure({ autoescape: true }); // const res ...

  9. 手动安装 saltshaker-plus 版本选择特别说明(后期重点讲解Docker安装方式)

    前后端都建议使用1.12版本

  10. Bonny校园app使用体验

    Bonny校园是一款集校园表白墙.失物招领处和二手市场集一体的一款校园app,旨在帮助大学生解决校内的生活问题.这款app功能比较齐全,表白墙内含有许多有趣的信息展示,失物招领处内可以详细的展示捡到东 ...