PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- java工作流系统jflow表单引擎字段扩展组件介绍
关键词:工作流快速开发平台 工作流流设计 业务流程管理 asp.net 开源工作流 bpm工作流系统 java工作流主流框架 自定义工作流引擎 表单设计器 流程设计器 装饰类图片 用于 ...
- sklearn使用小贴士
1 sklearn简介 Scikit-learn(sklearn)是机器学习中的第三方模块,封装了常用的机器学习算法,涉及回归.降维.分类以及聚类等,提供python接口. 虽然sklearn容纳的算 ...
- 【57】目标检测之Anchor Boxes
Anchor Boxes 到目前为止,对象检测中存在的一个问题是每个格子只能检测出一个对象,如果你想让一个格子检测出多个对象,你可以这么做,就是使用anchor box这个概念. 我们还是先吃一颗栗子 ...
- PMP--1.4 项目描述
一. 项目定义 项目:是为了创造 独特的产品.服务或成果而进行的临时性工作. 说明: (1)独特 即使某些项目中存在重复发元素,但重复不会改变项目本质上的独特性. (2)产品.服务或成果 1)一个独 ...
- Lucene之索引库的维护:添加,删除,修改
索引添加 Field域属性分类 添加文档的时候,我们文档当中包含多个域,那么域的类型是我们自定义的,上个案例使用的TextField域,那么这个域他会自动分词,然后存储 我们要根据数据类型和数据的用途 ...
- 在本地搭建git服务器
GitHub就是一个免费托管开源代码的远程仓库.但是对于某些视源代码如生命的商业公司来说,既不想公开源代码,又舍不得给GitHub交保护费,那就只能自己搭建一台Git服务器作为私有仓库使用. 搭建Gi ...
- Hystrix压测
背景介绍 JSF(京东服务框架,类似dubbo)默认配置了可伸缩的最大到200的工作线程池,每一个向外提供的服务都在其中运行(这里我们是服务端),这些服务内部调用外部依赖时(这里我们是客户端)一般是同 ...
- MySQL在Windows中设置环境变量
在桌面选择“计算机”的图标(或者是我的电脑),右键-->属性-->点击“高级系统设置” 然后选择 高级 选项点击环境变量 然后点击新建-> 变量名为MYSQL_HOME 变量值为m ...
- Tensorflow 之 loss
参考博客:https://blog.csdn.net/ZJRN1027/article/details/80199248 1.计算cost的过程 1)对神经网络的输出(logits)进行softmax ...
- 代数式到c语言表达式和常用的c语言数学库函数_pow_sqrt_exp_fabs_abs
数学知识来源于生活,因此我们需要把相关的数学的知识在自己生活找到实例. #include "common.h" #include <stdio.h> #include ...