PP: Triple-shapelet networks for time series classification
Problem: time series classification
shapelet-based method: two issues
1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.
2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.
They propose a shapelet learning model: triple shapelet networks.
the imbalance of shapelets in minority class and majority class, to address this issue:
they use category-level and sample-level shapelets to improve the performance.
classification is to find the best discriminating features.
Introduction:
Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.
1. calculate the distances of shapelets and use these distances as discriminative features for classification.
shapelet transformation: find the top-k shapelets in a single pass.
to address two issues:
1. imbalance features issue:
they learn both types of features: dataset-level features and category-specific features.
2. deformation issue:
Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.
Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.
Thinking about:
1. does this classification method is influenced by imbalanced datasets? and how?
whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?
PP: Triple-shapelet networks for time series classification的更多相关文章
- How to Use Convolutional Neural Networks for Time Series Classification
How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...
- PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...
- PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- describe neural networks as a series of computational steps via a directed graph.
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...
- Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks
用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
随机推荐
- Vue中的$Bus使用
Vue中的$Bus使用 将Bus单独抽离成一个文件 Bus.js import Vue from 'vue'; let Bus = new Vue(); export default Bus; 创建两 ...
- kernel定制,编译内核
定制kernel,就需要手动编译内核 一,准备开发环境 1,包组:Development Tools,Server Platform Development 2,包:ncurses和ncurses-d ...
- The server cannot be started because one or more of the ports are invalid. Open the server editor and correct the invalid ports.
在eclipse里运行jsp文件最初迟迟没有反应,重启报了这个错误,tomcat的端口设置有问题.需要打开服务器设置一下端口号. 点击Servers,如果没有这一项,按照Window-Show Vie ...
- 最新咕咆+鲁班+图灵+享学+蚂蚁+硅谷+源码 Java架构师资料《Java架构师VIP课程》
最新的Java架构师完整资料,完整视频+源码+文档. 每一套都是一百多个G的资料,无密. JAVA架构师全套课程 咕泡学院互联网架构师第一期 咕泡学院互联网架构师第二期 咕泡学院互联网架构师第三期 博 ...
- CMD命令下图片合成一句话木马命令
非常简单,我们只需要一张图片1.jpg一句话木马写好的php文件 1.php之后我们进入到命令行.注意:将php文件和图片文件放到同一目录下,cmd也要跳转到放文件的目录下之后执行命令 copy .j ...
- MySQL的JDBC驱动(8.0版本)
1.引用外部库 mysql-connector-java-8.0.版本的jar 2.jdbc驱动类:com.mysql.jdbc.Driver 改成 com.mysql.cj.jdbc.Drive ...
- 就不能换DB吗? 抽象工厂模式
15.1 就不能换DB吗? 15.2 最基本的数据访问程序 namespace 抽象工厂模式 { class Program { static void Main(string[] args) { U ...
- Java中顺序、并行与并发
顺序(sequential)用于表示多个操作依次处理.例如把十个操作交给一个人处理 并行(parallel)用于表示多个操作同时处理.比如是个操作分给两个人操作,两个人会并行处理 并发(concurr ...
- Document节点
概述 document节点对象代表整个文档,每张网页都有自己的document对象.window.document属性就指向这个对象.只要浏览器开始载入 HTML 文档,该对象就存在了,可以直接使用. ...
- KVM命令--优化篇(2)
1- 为什么要调优 ___ KVM采用全虚拟化技术,全虚拟化要由一个软件来模拟硬件,故有一定的损耗,特别是I/O,因此需要优化. ___ KVM性能优化主要在CPU.内存.I/O这几方面.当然对于这几 ...