Problem: time series classification

shapelet-based method: two issues

1. for multi-class imbalanced classification tasks, these methods will ignore the shapelets that can distinguish minority class from other classes.

2. the shapelets are fixed after the training phase and cannot adapt to time series with deformation.

They propose a shapelet learning model: triple shapelet networks.

the imbalance of shapelets in minority class and majority class, to address this issue:

they use category-level and sample-level shapelets to improve the performance.

classification is to find the best discriminating features.

Introduction:

Shapelets are discriminative subsequences of time series data. They are suitable for TSC tasks since different classes often can be distinguished by their local patterns rather than their global structure.

1. calculate the distances of shapelets and use these distances as discriminative features for classification.

shapelet transformation: find the top-k shapelets in a single pass.

to address two issues:

1. imbalance features issue:

they learn both types of features: dataset-level features and category-specific features.

2. deformation issue:

Hence it would be useful to have shapelets that are specific to the data being processed. Here, it is reasonable to use a shapelet generator that is driven by the data itself to produce sample-specific shapelets.

Three-types of shapelets: dataset-level; category-level; sample-specific level; use these three shapelets to conduct shapelet transformation and extract the discriminative features.

Thinking about:

1. does this classification method is influenced by imbalanced datasets? and how?

whether the method tends to ignore the feature of the minority categories? and only learns the features of majority categories?

PP: Triple-shapelet networks for time series classification的更多相关文章

  1. How to Use Convolutional Neural Networks for Time Series Classification

    How to Use Convolutional Neural Networks for Time Series Classification 2019-10-08 12:09:35 This blo ...

  2. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  3. 不平衡数据下的机器学习方法简介 imbalanced time series classification

    imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...

  4. 《Generative Adversarial Networks for Hyperspectral Image Classification 》论文笔记

    论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yu ...

  5. PP: Modeling extreme events in time series prediction

    KDD: Knowledge Discovery and Data Mining (KDD) Insititute: 复旦大学,中科大 Problem: time series prediction; ...

  6. PP: Composite visual mapping for time series visualization

    However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...

  7. describe neural networks as a series of computational steps via a directed graph.

    https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...

  8. Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks

    用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...

  9. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

随机推荐

  1. 在非NDK编译条件下使用Android Log函数

    解决的需求 有些时候不能在NDK环境编译,或者使用NDK编译会颇费周折,然后又想使用Android系统自带的Log类方法,那么我们就可以使用dlopen来实现我们的目的.比如在OpenCV中添加And ...

  2. 使用 linux kernel +busybox 定制linux系统

    目的: 了解linux的启动过程 主要内容: 1.grub 是启动程序的bootloader 2.linux-kernel 是linux的开源内核 3.busybox 是linux的工具集合 启动顺序 ...

  3. 关于HashMap中的扰动函数的疑问

    最近再看jdk8的hashmap源码,当看到这一步的时候有点疑问,去网上搜了一下,看到的所有文章基本上都是一篇抄一篇的(反正目前各大社区就是这么个状况),那个意思就是让高16位也参与运算,增加结果的随 ...

  4. 清北学堂—2020.1提高储备营—Day 4 afternoon(动态规划初步(一))

    qbxt Day 4 afternoon --2020.1.20 济南 主讲:顾霆枫 目录一览 1.动态规划初步 2.记忆化搜索 3.递推式动态规划 4.记忆话搜索与递推式动态规划的转化 5.状态转移 ...

  5. Dictionary的基本用法

    1.创建泛型哈希表,然后加入元素 Dictionary<string,string> openWith=new Dictionary<string, string>(); op ...

  6. python3-cookbook笔记:第五章 文件与IO

    python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...

  7. 解决树莓派鼠标延迟/迟滞问题-转CSDN博主“Deiki”-sunziren

    本文转自CSDN: https://blog.csdn.net/deiki/article/details/73252942,因为我在为树莓派安装2.4G无线键鼠的时候,鼠标反应很慢,卡顿严重(换成有 ...

  8. 剑指offer-面试题45-把数组排成最小的数-规律

    /* 题目: 给定一个int数组,返回数组中各数字排成的最下字符串. */ /* 思路: 比较两个数字之间的先后顺序,谁排在前面更小,从而对数组进行排序,得到结果. 两个数字先后顺序的比较方法:两个数 ...

  9. iframe中子父页面跨域通讯

    目录 #跨域发送信息 #跨域接收信息 #示例Demo 在非跨域的情况下,iframe中的子父页面可以很方便的通讯,但是在跨域的情况下,只能通过window.postMessage()方法来向其他页面发 ...

  10. EntityManager的Clear方法的使用

    在日常开发中,如果使用hibernate的话,常常会被hibernate的事务搞得焦头烂额.今天解决了之前项目中一直存在的问题,记录一下. 问题描述 有一张表TemplateCopy,如下 publi ...