TensorFlow——LinearRegression简单模型代码
代码函数详解
tf.random.truncated_normal()函数
tf.truncated_normal函数随机生成正态分布的数据,生成的数据是截断的正态分布,截断的标准是2倍的stddev。
zip()函数
zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。如果各个可迭代对象的元素个数不一致,则返回的对象长度与最短的可迭代对象相同。利用 * 号操作符,与zip相反,进行解压。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 plt.plot(train_x, train_y, 'r.')
plt.grid(True)
plt.show() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 with tf.Session() as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer,feed_dict={X:x, Y:y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X:x, Y:y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x*w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show()
TensorFlow——LinearRegression简单模型代码的更多相关文章
- TensorFlow实现线性回归模型代码
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as ...
- TensorFlow的序列模型代码解释(RNN、LSTM)---笔记(16)
1.学习单步的RNN:RNNCell.BasicRNNCell.BasicLSTMCell.LSTMCell.GRUCell (1)RNNCell 如果要学习TensorFlow中的RNN,第一站应该 ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- tensorflow rnn 最简单实现代码
tensorflow rnn 最简单实现代码 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf from te ...
- TensorFlow 训练好模型参数的保存和恢复代码
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...
- 用Tensorflow完成简单的线性回归模型
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在 ...
- Tensorflow模型代码调试问题
背景: 不知道大家有没有这样的烦恼:在使用Tensorflow搭建好模型调试的过程中,经常会碰到一些问题,当时花了不少时间把这个问题解决了,一段时间后,又出现了同样的问题,却怎么也不记得之前是怎么解决 ...
- Python Tensorflow下的Word2Vec代码解释
前言: 作为一个深度学习的重度狂热者,在学习了各项理论后一直想通过项目练手来学习深度学习的框架以及结构用在实战中的知识.心愿是好的,但机会却不好找.最近刚好有个项目,借此机会练手的过程中,我发现其实各 ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
随机推荐
- H3C Inverse ARP
- MySQL高级配置
参考文章:http://www.jb51.net/article/47419.htm https://blog.csdn.net/waneto2008/article/details/52502208 ...
- p2p平台详细运营框架
市场拓展部1.负责完成公司市场销售.市场拓展.费用控制等年度目标任务,并负责将目标责任制分解落实,确保各项工作目标得以实现.2.对营销政策.市场及同业营销动态等方面进行调研分析,及时调整营销策略和计划 ...
- Vue v-if和v-show的使用.区别
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 无限调用函数add(1)(2)(3)......
无限调用函数,并且累计结果 其实这也算一道面试题吧,笔者曾经被提问过,可惜当时没能答上来...
- 【js】vue 2.5.1 源码学习 (十一) 模板编译compileToFunctions渲染函数
大体思路(九) 本节内容: 1. compileToFunctions定位 1. compileToFunctions定位 ==> createCompiler = createCompiler ...
- linux 短延时
当一个设备驱动需要处理它的硬件的反应时间, 涉及到的延时常常是最多几个毫秒. 在这 个情况下, 依靠时钟嘀哒显然不对路. The kernel functions ndelay, udelay, an ...
- dijkstra堆优化(multiset实现->大大减小代码量)
例题: Time Limit: 1 second Memory Limit: 128 MB [问题描述] 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣 ...
- 一个简单的Web服务器-支持静态资源请求
目标 实现一个简单的Web服务器,能够根据HTTP请求的URL响应对应的静态资源,如果静态资源不存在则响应404. HttpServer 使用ServerSocket实现的一个服务器,request根 ...
- SNOI2019
题解: t1: 想了一会才会.. 以为是啥最小表示法之类的..然后这个我又不会 其实只要考虑一下a[i],a[i+1]之间的大小关系就行了 t2: 好像和题解不太一样.. 我的做法比较麻烦.. 枚举A ...