六:定时发送消息

哨兵每隔一段时间,会向其所监控的所有实例发送一些命令,用于获取这些实例的状态。这些命令包括:”PING”、”INFO”和”PUBLISH”。

“PING”命令,主要用于哨兵探测实例是否活着。如果对方超过一段时间,还没有回复”PING”命令,则认为其是主观下线了。

“INFO”命令,主要用于哨兵获取实例当前的状态和信息,比如该实例当前是主节点还是从节点;该实例反馈的IP地址和PORT信息,是否与我记录的一样;该实例如果是主节点的话,那它都有哪些从节点;该实例如果是从节点的话,它与主节点是否连通,它的优先级是多少,它的复制偏移量是多少等等,这些信息在故障转移流程中,是判断实例状态的重要信息;

“PUBLISH”命令,主要用于哨兵向实例的HELLO频道发布有关自己以及主节点的信息,也就是所谓的HELLO消息。因为所有哨兵都会订阅主节点和从节点的HELLO频道,因此,每个哨兵都会收到其他哨兵发布的信息。

因此,通过这些命令,尽管在配置文件中只配置了主节点的信息,但是哨兵可以通过主节点的”INFO”回复,得到所有从节点的信息;又可以通过订阅实例的HELLO频道,接收其他哨兵通过”PUBLISH”命令发布的信息,从而得到监控同一主节点的所有其他哨兵的信息。

在“主函数”sentinelHandleRedisInstance中,是通过调用sentinelSendPeriodicCommands来发送这些命令的。注意,以上的命令都有自己的发送周期,在sentinelSendPeriodicCommands函数中,并不是一并发送三个命令,而是发送那些,按照发送周期应该发送的命令。该函数的代码如下:

void sentinelSendPeriodicCommands(sentinelRedisInstance *ri) {
mstime_t now = mstime();
mstime_t info_period, ping_period;
int retval; /* Return ASAP if we have already a PING or INFO already pending, or
* in the case the instance is not properly connected. */
if (ri->flags & SRI_DISCONNECTED) return; /* For INFO, PING, PUBLISH that are not critical commands to send we
* also have a limit of SENTINEL_MAX_PENDING_COMMANDS. We don't
* want to use a lot of memory just because a link is not working
* properly (note that anyway there is a redundant protection about this,
* that is, the link will be disconnected and reconnected if a long
* timeout condition is detected. */
if (ri->pending_commands >= SENTINEL_MAX_PENDING_COMMANDS) return; /* If this is a slave of a master in O_DOWN condition we start sending
* it INFO every second, instead of the usual SENTINEL_INFO_PERIOD
* period. In this state we want to closely monitor slaves in case they
* are turned into masters by another Sentinel, or by the sysadmin. */
if ((ri->flags & SRI_SLAVE) &&
(ri->master->flags & (SRI_O_DOWN|SRI_FAILOVER_IN_PROGRESS))) {
info_period = 1000;
} else {
info_period = SENTINEL_INFO_PERIOD;
} /* We ping instances every time the last received pong is older than
* the configured 'down-after-milliseconds' time, but every second
* anyway if 'down-after-milliseconds' is greater than 1 second. */
ping_period = ri->down_after_period;
if (ping_period > SENTINEL_PING_PERIOD) ping_period = SENTINEL_PING_PERIOD; if ((ri->flags & SRI_SENTINEL) == 0 &&
(ri->info_refresh == 0 ||
(now - ri->info_refresh) > info_period))
{
/* Send INFO to masters and slaves, not sentinels. */
retval = redisAsyncCommand(ri->cc,
sentinelInfoReplyCallback, NULL, "INFO");
if (retval == REDIS_OK) ri->pending_commands++;
} else if ((now - ri->last_pong_time) > ping_period) {
/* Send PING to all the three kinds of instances. */
sentinelSendPing(ri);
} else if ((now - ri->last_pub_time) > SENTINEL_PUBLISH_PERIOD) {
/* PUBLISH hello messages to all the three kinds of instances. */
sentinelSendHello(ri);
}
}

如果实例标志位中设置了SRI_DISCONNECTED标记,说明当前实例的异步上下文还没有创建好,因此直接返回;

实例的pending_commands属性,表示已经向该实例发送的命令中,尚有pending_commands个命令还没有收到回复。每次调用redisAsyncCommand函数,向实例异步发送一条命令之后,就会增加该属性的值,而每当收到命令回复之后,就会减少该属性的值;

因此,如果该属性的值大于SENTINEL_MAX_PENDING_COMMANDS(100),说明该实例尚有超过100条命令的回复信息没有收到。这种情况下,说明与实例的连接已经不正常了,为了节约内存,因此直接返回;

接下来计算info_period和ping_period,这俩值表示发送"INFO"和"PING"命令的时间周期。如果当前时间距离上次收到"INFO"或"PING"回复的时间已经超过了info_period或ping_period,则向实例发送"INFO"或"PING"命令;

如果当前实例为从节点,并且该从节点对应的主节点已经客观下线了,则置info_period为1000,否则的话置为SENTINEL_INFO_PERIOD(10000)。之所以在主节点客观下线后更频繁的向从节点发送"INFO"命令,是因为从节点可能会被置为新的主节点,因此需要更加实时的获取其状态;

将ping_period置为ri->down_after_period的值,该属性的值是根据配置文件中down-after-milliseconds选项得到的,如果该属性值大于SENTINEL_PING_PERIOD(1000),则将ping_period置为SENTINEL_PING_PERIOD;

接下来开始发送命令:如果当前实例不是哨兵实例,并且距离上次收到"INFO"命令回复已经超过了info_period,则向该实例异步发送"INFO"命令。

否则,如果距离上次收到"PING"命令回复已经超过了ping_period,则调用函数sentinelSendPing向该实例异步发送"PING"命令;

否则,如果距离上次收到"PUBLISH"命令的回复已经超过了SENTINEL_PUBLISH_PERIOD(2000),则调用函数sentinelSendHello向该实例异步发送"PUBLISH"命令;

因此,"PING"用于探测实例是否活着,可以发送给所有类型的实例;而"INFO"命令用于获取实例的信息,只需发送给主节点和从节点实例;而"PUBLISH"用于向HELLO频道发布哨兵本身和主节点的信息,除了发送给主节点和从节点之外,哨兵本身也实现了"PUBLISH"命令的处理函数,因此该命令也会发送给哨兵实例。

1:PING消息

函数sentinelSendPing用于向实例发送”PING”命令,因为该命令用于探测实例是否主观下线,因此等到后面讲解主观下线是在分析。

2:HELLO消息

函数sentinelSendHello用于发布HELLO消息,它的代码如下:

int sentinelSendHello(sentinelRedisInstance *ri) {
char ip[REDIS_IP_STR_LEN];
char payload[REDIS_IP_STR_LEN+1024];
int retval;
char *announce_ip;
int announce_port;
sentinelRedisInstance *master = (ri->flags & SRI_MASTER) ? ri : ri->master;
sentinelAddr *master_addr = sentinelGetCurrentMasterAddress(master); if (ri->flags & SRI_DISCONNECTED) return REDIS_ERR; /* Use the specified announce address if specified, otherwise try to
* obtain our own IP address. */
if (sentinel.announce_ip) {
announce_ip = sentinel.announce_ip;
} else {
if (anetSockName(ri->cc->c.fd,ip,sizeof(ip),NULL) == -1)
return REDIS_ERR;
announce_ip = ip;
}
announce_port = sentinel.announce_port ?
sentinel.announce_port : server.port; /* Format and send the Hello message. */
snprintf(payload,sizeof(payload),
"%s,%d,%s,%llu," /* Info about this sentinel. */
"%s,%s,%d,%llu", /* Info about current master. */
announce_ip, announce_port, server.runid,
(unsigned long long) sentinel.current_epoch,
/* --- */
master->name,master_addr->ip,master_addr->port,
(unsigned long long) master->config_epoch);
retval = redisAsyncCommand(ri->cc,
sentinelPublishReplyCallback, NULL, "PUBLISH %s %s",
SENTINEL_HELLO_CHANNEL,payload);
if (retval != REDIS_OK) return REDIS_ERR;
ri->pending_commands++;
return REDIS_OK;
}

首先得到实例ri所属的主节点实例master;然后调用sentinelGetCurrentMasterAddress函数得到master的地址信息;

如果实例ri的标志位中具有SRI_DISCONNECTED标记的话,直接返回;

如果当前哨兵配置了sentinel.announce_ip的话,则使用该ip信息作为自己的ip地址,否则,调用anetSockName函数,根据socket描述符得到当前哨兵的ip地址;

如果当前哨兵配置了sentinel.announce_port的话,则使用该port信息作为自己的端口信息,否则,使用server.port作为当前哨兵的端口信息;

接下来组装要发布的HELLO信息,HELLO信息的格式是:"sentinel_ip,sentinel_port,sentinel_runid,current_epoch,master_name,master_ip,master_port,master_config_epoch"

接下来,向ri异步发送"PUBLISH__sentinel__:hello <HELLO>"命令,设置命令回调函数为sentinelPublishReplyCallback;

当哨兵收到实例对于该”PUBLISH”命令的回复之后,会调用回调函数sentinelPublishReplyCallback,该函数只用于更新属性ri->last_pub_time,对回复内容无需关心:

void sentinelPublishReplyCallback(redisAsyncContext *c, void *reply, void *privdata) {
sentinelRedisInstance *ri = c->data;
redisReply *r;
REDIS_NOTUSED(privdata); if (ri) ri->pending_commands--;
if (!reply || !ri) return;
r = reply; /* Only update pub_time if we actually published our message. Otherwise
* we'll retry again in 100 milliseconds. */
if (r->type != REDIS_REPLY_ERROR)
ri->last_pub_time = mstime();
}

之前在介绍sentinelReconnectInstance函数时讲过,当哨兵向主节点或从节点实例建立订阅连接时,向实例发送” SUBSCRIBE __sentinel__:hello"命令,订阅HELLO频道时,设置该命令的回调函数为sentinelReceiveHelloMessages。因此,当收到该频道上发布的消息时,就会调用函数sentinelReceiveHelloMessages。

该频道上的消息,是监控同一实例的其他哨兵节点发来的HELLO消息,当前哨兵通过HELLO消息,来发现其他哨兵,并且相互之间交互最新的主节点信息。sentinelReceiveHelloMessages函数的代码如下:

void sentinelReceiveHelloMessages(redisAsyncContext *c, void *reply, void *privdata) {
sentinelRedisInstance *ri = c->data;
redisReply *r;
REDIS_NOTUSED(privdata); if (!reply || !ri) return;
r = reply; /* Update the last activity in the pubsub channel. Note that since we
* receive our messages as well this timestamp can be used to detect
* if the link is probably disconnected even if it seems otherwise. */
ri->pc_last_activity = mstime(); /* Sanity check in the reply we expect, so that the code that follows
* can avoid to check for details. */
if (r->type != REDIS_REPLY_ARRAY ||
r->elements != 3 ||
r->element[0]->type != REDIS_REPLY_STRING ||
r->element[1]->type != REDIS_REPLY_STRING ||
r->element[2]->type != REDIS_REPLY_STRING ||
strcmp(r->element[0]->str,"message") != 0) return; /* We are not interested in meeting ourselves */
if (strstr(r->element[2]->str,server.runid) != NULL) return; sentinelProcessHelloMessage(r->element[2]->str, r->element[2]->len);
}

该函数中,首先更新ri->pc_last_activity为当前时间;

然后判断是否处理接收到的消息,注意,只处理"message"消息,也就是说不会处理"subscribe"消息;

注意,如果收到的"message"消息中,包含了自身的runid,说明这是本哨兵自己发送的消息,因此无需处理,直接返回;

最后,调用sentinelProcessHelloMessage函数处理收到的HELLO消息;

注意:在测试时发现会收到从节点重复的HELLO消息,也就是同一时间,同一个哨兵发布的两条一模一样的消息。这是因为哨兵向主节点发送的”PUBLISH”命令,会因为主从复制的原因,而同步到从节点;而同时该哨兵也向从节点发送”PUBLISH”命令,因此,从节点就会在同一时间,收到两条一模一样的HELLO消息,并将它们发布到频道上。

另外,一旦哨兵发现了其他哨兵之后,可以直接向其发送"PUBLISH __sentinel__:hello <HELLO>"命令。哨兵自己实现了”PUBLISH”的处理函数sentinelPublishCommand,当收到其他哨兵直接发来的HELLO消息时,就会调用该函数处理。该函数的代码如下:

void sentinelPublishCommand(redisClient *c) {
if (strcmp(c->argv[1]->ptr,SENTINEL_HELLO_CHANNEL)) {
addReplyError(c, "Only HELLO messages are accepted by Sentinel instances.");
return;
}
sentinelProcessHelloMessage(c->argv[2]->ptr,sdslen(c->argv[2]->ptr));
addReplyLongLong(c,1);
}

因此,不管是从真正的订阅频道中收到HELLO消息,还是直接收到其他哨兵发来的”PUBLISH”命令,最终都是通过sentinelProcessHelloMessage函数对HELLO消息进行处理的。该函数的代码如下:

void sentinelProcessHelloMessage(char *hello, int hello_len) {
/* Format is composed of 8 tokens:
* 0=ip,1=port,2=runid,3=current_epoch,4=master_name,
* 5=master_ip,6=master_port,7=master_config_epoch. */
int numtokens, port, removed, master_port;
uint64_t current_epoch, master_config_epoch;
char **token = sdssplitlen(hello, hello_len, ",", 1, &numtokens);
sentinelRedisInstance *si, *master; if (numtokens == 8) {
/* Obtain a reference to the master this hello message is about */
master = sentinelGetMasterByName(token[4]);
if (!master) goto cleanup; /* Unknown master, skip the message. */ /* First, try to see if we already have this sentinel. */
port = atoi(token[1]);
master_port = atoi(token[6]);
si = getSentinelRedisInstanceByAddrAndRunID(
master->sentinels,token[0],port,token[2]);
current_epoch = strtoull(token[3],NULL,10);
master_config_epoch = strtoull(token[7],NULL,10); if (!si) {
/* If not, remove all the sentinels that have the same runid
* OR the same ip/port, because it's either a restart or a
* network topology change. */
removed = removeMatchingSentinelsFromMaster(master,token[0],port,
token[2]);
if (removed) {
sentinelEvent(REDIS_NOTICE,"-dup-sentinel",master,
"%@ #duplicate of %s:%d or %s",
token[0],port,token[2]);
} /* Add the new sentinel. */
si = createSentinelRedisInstance(NULL,SRI_SENTINEL,
token[0],port,master->quorum,master);
if (si) {
sentinelEvent(REDIS_NOTICE,"+sentinel",si,"%@");
/* The runid is NULL after a new instance creation and
* for Sentinels we don't have a later chance to fill it,
* so do it now. */
si->runid = sdsnew(token[2]);
sentinelFlushConfig();
}
} /* Update local current_epoch if received current_epoch is greater.*/
if (current_epoch > sentinel.current_epoch) {
sentinel.current_epoch = current_epoch;
sentinelFlushConfig();
sentinelEvent(REDIS_WARNING,"+new-epoch",master,"%llu",
(unsigned long long) sentinel.current_epoch);
} /* Update master info if received configuration is newer. */
if (master->config_epoch < master_config_epoch) {
master->config_epoch = master_config_epoch;
if (master_port != master->addr->port ||
strcmp(master->addr->ip, token[5]))
{
sentinelAddr *old_addr; sentinelEvent(REDIS_WARNING,"+config-update-from",si,"%@");
sentinelEvent(REDIS_WARNING,"+switch-master",
master,"%s %s %d %s %d",
master->name,
master->addr->ip, master->addr->port,
token[5], master_port); old_addr = dupSentinelAddr(master->addr);
sentinelResetMasterAndChangeAddress(master, token[5], master_port);
sentinelCallClientReconfScript(master,
SENTINEL_OBSERVER,"start",
old_addr,master->addr);
releaseSentinelAddr(old_addr);
}
} /* Update the state of the Sentinel. */
if (si) si->last_hello_time = mstime();
} cleanup:
sdsfreesplitres(token,numtokens);
}

首先,根据消息中的master_name,调用函数sentinelGetMasterByName,在字典sentinel.masters中寻找相应的主节点实例master,如果找不到,则直接退出;

然后,调用getSentinelRedisInstanceByAddrAndRunID函数,根据消息中的sentinel_ip,sentinel_port和sentinel_runid信息,在字典master->sentinels中,找到runid,ip和port都匹配的哨兵实例。

如果没有找到匹配的哨兵实例,要么这是一个新发现的哨兵,要么是某个哨兵的信息发生了变化(比如有可能某个哨兵实例重启了,导致runid发生了变化;或者网络拓扑发生了变化,导致ip或port发生了变化)。

这种情况下,首先调用函数removeMatchingSentinelsFromMaster,删除字典master->sentinels中,具有相同runid,或者具有相同ip和port的哨兵实例;然后根据HELLO消息中的ip和port信息,重新创建一个新的哨兵实例,添加到字典master->sentinels中,这样下次调用sentinelReconnectInstance时,就会向该哨兵实例进行建链了。;

如果找到了匹配的哨兵实例,并且HELLO消息中的sentinel_current_epoch,大于本实例当前的current_epoch,则更新本实例的current_epoch属性;

如果HELLO消息中的master_config_epoch,大于本实例记录的master的config_epoch,则更新本实例记录的master的config_epoch。并且如果HELLO消息中的master_ip或master_port,与本实例记录的主节点的ip或port信息不匹配的话,则说明可能发生了故障转移,某个从节点升级成为了新的主节点,因此调用sentinelResetMasterAndChangeAddress函数,重置主节点,及其从节点实例的信息;

最后,更新si->last_hello_time属性为当前时间;

3:”INFO”命令

“INFO”命令,主要用于哨兵获取主从节点实例当前的状态和信息,比如该实例当前是主节点还是从节点;该实例反馈的IP地址和PORT信息,是否与本哨兵记录的一样;该实例如果是主节点的话,那它都有哪些从节点;该实例如果是从节点的话,它与主节点是否连通,它的优先级是多少,它的复制偏移量是多少等等,这些信息在故障转移流程中,是判断实例状态的重要信息;

在sentinelSendPeriodicCommands函数中,设置的”INFO”命令的回调函数是sentinelInfoReplyCallback。该函数的代码很简单,主要是调用sentinelRefreshInstanceInfo函数对回复进行处理。因此,主要看一下sentinelRefreshInstanceInfo函数的代码:

void sentinelRefreshInstanceInfo(sentinelRedisInstance *ri, const char *info) {
sds *lines;
int numlines, j;
int role = 0; /* The following fields must be reset to a given value in the case they
* are not found at all in the INFO output. */
ri->master_link_down_time = 0; /* Process line by line. */
lines = sdssplitlen(info,strlen(info),"\r\n",2,&numlines);
for (j = 0; j < numlines; j++) {
sentinelRedisInstance *slave;
sds l = lines[j]; /* run_id:<40 hex chars>*/
if (sdslen(l) >= 47 && !memcmp(l,"run_id:",7)) {
if (ri->runid == NULL) {
ri->runid = sdsnewlen(l+7,40);
} else {
if (strncmp(ri->runid,l+7,40) != 0) {
sentinelEvent(REDIS_NOTICE,"+reboot",ri,"%@");
sdsfree(ri->runid);
ri->runid = sdsnewlen(l+7,40);
}
}
} /* old versions: slave0:<ip>,<port>,<state>
* new versions: slave0:ip=127.0.0.1,port=9999,... */
if ((ri->flags & SRI_MASTER) &&
sdslen(l) >= 7 &&
!memcmp(l,"slave",5) && isdigit(l[5]))
{
char *ip, *port, *end; if (strstr(l,"ip=") == NULL) {
/* Old format. */
ip = strchr(l,':'); if (!ip) continue;
ip++; /* Now ip points to start of ip address. */
port = strchr(ip,','); if (!port) continue;
*port = '\0'; /* nul term for easy access. */
port++; /* Now port points to start of port number. */
end = strchr(port,','); if (!end) continue;
*end = '\0'; /* nul term for easy access. */
} else {
/* New format. */
ip = strstr(l,"ip="); if (!ip) continue;
ip += 3; /* Now ip points to start of ip address. */
port = strstr(l,"port="); if (!port) continue;
port += 5; /* Now port points to start of port number. */
/* Nul term both fields for easy access. */
end = strchr(ip,','); if (end) *end = '\0';
end = strchr(port,','); if (end) *end = '\0';
} /* Check if we already have this slave into our table,
* otherwise add it. */
if (sentinelRedisInstanceLookupSlave(ri,ip,atoi(port)) == NULL) {
if ((slave = createSentinelRedisInstance(NULL,SRI_SLAVE,ip,
atoi(port), ri->quorum, ri)) != NULL)
{
sentinelEvent(REDIS_NOTICE,"+slave",slave,"%@");
sentinelFlushConfig();
}
}
} /* master_link_down_since_seconds:<seconds> */
if (sdslen(l) >= 32 &&
!memcmp(l,"master_link_down_since_seconds",30))
{
ri->master_link_down_time = strtoll(l+31,NULL,10)*1000;
} /* role:<role> */
if (!memcmp(l,"role:master",11)) role = SRI_MASTER;
else if (!memcmp(l,"role:slave",10)) role = SRI_SLAVE; if (role == SRI_SLAVE) {
/* master_host:<host> */
if (sdslen(l) >= 12 && !memcmp(l,"master_host:",12)) {
if (ri->slave_master_host == NULL ||
strcasecmp(l+12,ri->slave_master_host))
{
sdsfree(ri->slave_master_host);
ri->slave_master_host = sdsnew(l+12);
ri->slave_conf_change_time = mstime();
}
} /* master_port:<port> */
if (sdslen(l) >= 12 && !memcmp(l,"master_port:",12)) {
int slave_master_port = atoi(l+12); if (ri->slave_master_port != slave_master_port) {
ri->slave_master_port = slave_master_port;
ri->slave_conf_change_time = mstime();
}
} /* master_link_status:<status> */
if (sdslen(l) >= 19 && !memcmp(l,"master_link_status:",19)) {
ri->slave_master_link_status =
(strcasecmp(l+19,"up") == 0) ?
SENTINEL_MASTER_LINK_STATUS_UP :
SENTINEL_MASTER_LINK_STATUS_DOWN;
} /* slave_priority:<priority> */
if (sdslen(l) >= 15 && !memcmp(l,"slave_priority:",15))
ri->slave_priority = atoi(l+15); /* slave_repl_offset:<offset> */
if (sdslen(l) >= 18 && !memcmp(l,"slave_repl_offset:",18))
ri->slave_repl_offset = strtoull(l+18,NULL,10);
}
}
ri->info_refresh = mstime();
sdsfreesplitres(lines,numlines); /* ---------------------------- Acting half -----------------------------
* Some things will not happen if sentinel.tilt is true, but some will
* still be processed. */ /* Remember when the role changed. */
if (role != ri->role_reported) {
ri->role_reported_time = mstime();
ri->role_reported = role;
if (role == SRI_SLAVE) ri->slave_conf_change_time = mstime();
/* Log the event with +role-change if the new role is coherent or
* with -role-change if there is a mismatch with the current config. */
sentinelEvent(REDIS_VERBOSE,
((ri->flags & (SRI_MASTER|SRI_SLAVE)) == role) ?
"+role-change" : "-role-change",
ri, "%@ new reported role is %s",
role == SRI_MASTER ? "master" : "slave",
ri->flags & SRI_MASTER ? "master" : "slave");
} /* None of the following conditions are processed when in tilt mode, so
* return asap. */
if (sentinel.tilt) return; /* Handle master -> slave role switch. */
if ((ri->flags & SRI_MASTER) && role == SRI_SLAVE) {
/* Nothing to do, but masters claiming to be slaves are
* considered to be unreachable by Sentinel, so eventually
* a failover will be triggered. */
}
...
}

该函数首先在for循环中解析"INFO"回复信息:

首先解析出"run_id"之后的信息,保存在ri->runid中。如果该实例的runid发生了变化,还需要记录日志,向"+reboot"频道发布消息;

如果实例为主节点,则解析"slave"后的从节点信息,取出其中的ip和port信息,然后根据ip和port,调用sentinelRedisInstanceLookupSlave函数,在字典ri->slaves中寻找是否已经保存了该从节点的信息。如果没有,则调用createSentinelRedisInstance创建从节点实例,并插入到ri->slaves中,也就是发现了主节点属下的从节点,下次调用函数sentinelReconnectInstance时,就会向该从节点建链了;

解析"master_link_down_since_seconds"信息,该信息表示从节点与主节点的断链时间。将其转换成整数后,记录到ri->master_link_down_time中;

解析"role"信息,如果包含"role:master",则置role为SRI_MASTER,说明该实例报告自己为主节点;如果包含"role:slave",则置role为SRI_SLAVE,说明该实例报告自己为从节点;

如果role为SRI_SLAVE,找到回复信息中的"master_host:"信息,记录到ri->slave_master_host中;找到回复信息中的"master_port:"信息,记录到ri->slave_master_port中;找到回复信息中的"master_link_status:"信息,根据其值是否为"up",记录到ri->slave_master_link_status中;找到回复信息中的"slave_priority:"信息,记录到ri->slave_priority中;找到回复信息中的"slave_repl_offset:"信息,记录到ri->slave_repl_offset中;

解析完所有"INFO"回复信息之后,更新ri->info_refresh为当前时间;

接下来根据实例的角色信息执行一些动作:

ri->role_reported的初始值是根据ri->flags得到的,如果收到"INFO"回复后,解析得到的role与ri->role_reported不同,说明该实例的角色发生了变化,比如从主节点变成了从节点,或者相反。只要role与ri->role_reported不同,就首先更新ri->role_reported_time为当前时间,并且将ri->role_reported置为role;如果role为SRI_SLAVE,还需要更新ri->slave_conf_change_time的值为当前时间;最后,还根据ri->flags中的角色是否与role,来记录日志,发布信息;

如果当前哨兵已经进入了TILT模式,则直接返回;

如果ri->flags中为主节点,但是role为从节点,这种情况无需采取动作,因为这种情况会被视为主节点不可达,最终会引发故障迁移流程;

本函数剩下的动作,与故障转移流程有关,后续在介绍。

七:判断实例是否主观下线

         首先解释一下主观下线和客观下线的区别。

所谓主观下线,就是从“我”(当前实例)的角度来看,某个实例已经下线了。但是单个哨兵的视角可能是盲目的,仅从“我”的角度,就决定一个实例下线是武断的。因此,“我”还会通过命令询问其他哨兵节点,看它们是否也认为该实例已经下线了,如果超过quorum个(包括“我”)哨兵反馈认为该实例已经下线了,则“我”就会认为该实例确实已经下线了,也就是所谓的客观下线了。

判断某个实例主观下线,主要是根据其是否能及时回复”PING”命令决定的。因此,首先看一下发送”PING”命令的函数sentinelSendPing的实现:

int sentinelSendPing(sentinelRedisInstance *ri) {
int retval = redisAsyncCommand(ri->cc,
sentinelPingReplyCallback, NULL, "PING");
if (retval == REDIS_OK) {
ri->pending_commands++;
/* We update the ping time only if we received the pong for
* the previous ping, otherwise we are technically waiting
* since the first ping that did not received a reply. */
if (ri->last_ping_time == 0) ri->last_ping_time = mstime();
return 1;
} else {
return 0;
}
}

在该函数中,设置收到”PING”命令回复后的回调函数为sentinelPingReplyCallback。

需要注意的是,如果ri->last_ping_time值为0,则更新ri->last_ping_time为当前时间。而只有在收到"PING"命令的正常回复之后,ri->last_ping_time的值才会被置为0。

下面是回调函数sentinelPingReplyCallback的代码:

void sentinelPingReplyCallback(redisAsyncContext *c, void *reply, void *privdata) {
sentinelRedisInstance *ri = c->data;
redisReply *r;
REDIS_NOTUSED(privdata); if (ri) ri->pending_commands--;
if (!reply || !ri) return;
r = reply; if (r->type == REDIS_REPLY_STATUS ||
r->type == REDIS_REPLY_ERROR) {
/* Update the "instance available" field only if this is an
* acceptable reply. */
if (strncmp(r->str,"PONG",4) == 0 ||
strncmp(r->str,"LOADING",7) == 0 ||
strncmp(r->str,"MASTERDOWN",10) == 0)
{
ri->last_avail_time = mstime();
ri->last_ping_time = 0; /* Flag the pong as received. */
} else {
/* Send a SCRIPT KILL command if the instance appears to be
* down because of a busy script. */
if (strncmp(r->str,"BUSY",4) == 0 &&
(ri->flags & SRI_S_DOWN) &&
!(ri->flags & SRI_SCRIPT_KILL_SENT))
{
if (redisAsyncCommand(ri->cc,
sentinelDiscardReplyCallback, NULL,
"SCRIPT KILL") == REDIS_OK)
ri->pending_commands++;
ri->flags |= SRI_SCRIPT_KILL_SENT;
}
}
}
ri->last_pong_time = mstime();
}

如果回复信息为"PONG","LOADING"或"MASTERDOWN",表示正常回复,因此置该实例的属性ri->last_avail_time为当前时间,并且置ri->last_ping_time为0,这样下次发送"PING"命令时就会更新ri->last_ping_time的值了;

如果回复信息以"BUSY"开头,并且该实例已经被置为主观下线,并且还没有向该实例发送过"SCRIPT KILL"命令,则向该实例发送"SCRIPTKILL"命令;

最后,不管回复信息是什么,更新ri->last_pong_time为当前时间。

因此,有关”PING”命令的时间属性总结如下:

ri->last_ping_time:上一次正常发送”PING”命令的时间。需要注意的是,只有当收到"PING"命令的正常回复后,下次发送"PING"命令时才会更新该属性为当时时间戳。如果发送”PING”命令后,没有收到任何回复,或者没有收到正常回复,则下次发送”PING”命令时,就不会更新该属性。如果该属性值为0,说明已经收到了上一个"PING"命令的正常回复,但是还没有开始发送下一个"PING"命令。检测实例是否主观下线,主要就是根据该属性判断的。

ri->last_pong_time:每当收到"PING"命令的回复后,不管是否是正常恢复,都会更新该属性为当时时间戳;

在哨兵的“主函数”sentinelHandleRedisInstance中,调用sentinelCheckSubjectivelyDown函数检测实例是否主观下线,该函数同时还会检测TCP连接是否正常。该函数的代码如下:

void sentinelCheckSubjectivelyDown(sentinelRedisInstance *ri) {
mstime_t elapsed = 0; if (ri->last_ping_time)
elapsed = mstime() - ri->last_ping_time; /* Check if we are in need for a reconnection of one of the
* links, because we are detecting low activity.
*
* 1) Check if the command link seems connected, was connected not less
* than SENTINEL_MIN_LINK_RECONNECT_PERIOD, but still we have a
* pending ping for more than half the timeout. */
if (ri->cc &&
(mstime() - ri->cc_conn_time) > SENTINEL_MIN_LINK_RECONNECT_PERIOD &&
ri->last_ping_time != 0 && /* Ther is a pending ping... */
/* The pending ping is delayed, and we did not received
* error replies as well. */
(mstime() - ri->last_ping_time) > (ri->down_after_period/2) &&
(mstime() - ri->last_pong_time) > (ri->down_after_period/2))
{
sentinelKillLink(ri,ri->cc);
} /* 2) Check if the pubsub link seems connected, was connected not less
* than SENTINEL_MIN_LINK_RECONNECT_PERIOD, but still we have no
* activity in the Pub/Sub channel for more than
* SENTINEL_PUBLISH_PERIOD * 3.
*/
if (ri->pc &&
(mstime() - ri->pc_conn_time) > SENTINEL_MIN_LINK_RECONNECT_PERIOD &&
(mstime() - ri->pc_last_activity) > (SENTINEL_PUBLISH_PERIOD*3))
{
sentinelKillLink(ri,ri->pc);
} /* Update the SDOWN flag. We believe the instance is SDOWN if:
*
* 1) It is not replying.
* 2) We believe it is a master, it reports to be a slave for enough time
* to meet the down_after_period, plus enough time to get two times
* INFO report from the instance. */
if (elapsed > ri->down_after_period ||
(ri->flags & SRI_MASTER &&
ri->role_reported == SRI_SLAVE &&
mstime() - ri->role_reported_time >
(ri->down_after_period+SENTINEL_INFO_PERIOD*2)))
{
/* Is subjectively down */
if ((ri->flags & SRI_S_DOWN) == 0) {
sentinelEvent(REDIS_WARNING,"+sdown",ri,"%@");
ri->s_down_since_time = mstime();
ri->flags |= SRI_S_DOWN;
}
} else {
/* Is subjectively up */
if (ri->flags & SRI_S_DOWN) {
sentinelEvent(REDIS_WARNING,"-sdown",ri,"%@");
ri->flags &= ~(SRI_S_DOWN|SRI_SCRIPT_KILL_SENT);
}
}
}

ri->cc_conn_time属性表示上一次向该实例发起命令类型的TCP建链的时间;ri->pc_conn_time属性表示上一次向该实例发起订阅类型的TCP建链的时间;

首先计算elapsed的值,该值表示是当前时间与ri->last_ping_time之间的时间差;

然后判断命令类型的TCP连接是否正常,不正常的条件是:距离上次建链时已经超过了SENTINEL_MIN_LINK_RECONNECT_PERIOD,并且上次发送"PING"后还没有收到正常回复,且当前时间与ri->last_ping_time之间的时间差已经超过了ri->down_after_period/2,并且距离上次收到任何"PING"回复的时间,已经超过了ri->down_after_period/2;

如果命令类型的连接不正常了,则直接调用sentinelKillLink断开连接,释放异步上下文;

然后判断订阅类型的TCP连接是否正常,不正常的条件是:距离上次建链时已经超过了SENTINEL_MIN_LINK_RECONNECT_PERIOD,并且距离上次收到订阅频道发来的任何消息的时间,已经超过了SENTINEL_PUBLISH_PERIOD*3;

如果订阅类型的连接不正常了,则直接调用sentinelKillLink断开连接,释放异步上下文;

如果elapsed的值大于ri->down_after_period,或者:当前实例我认为它是主节点,但是它的"INFO"回复中却报告自己是从节点,并且距离上次收到它在"INFO"回复中报告自己是从节点的时间,已经超过了ri->down_after_period+SENTINEL_INFO_PERIOD*2;

满足以上任意一个条件,都认为该实例是主观下线了。因此:只要该实例还没有标志为主观下线,则将SRI_S_DOWN标记增加到实例标志位中,表示该实例主观下线;

如果不满足以上条件,但是该实例之前已经被标记为主观下线了,则认为该实例主观上线了,去掉其标志位中的SRI_S_DOWN和SRI_SCRIPT_KILL_SENT标记;

Redis源码解析:21sentinel(二)定期发送消息、检测主观下线的更多相关文章

  1. Redis源码阅读(二)高可用设计——复制

    Redis源码阅读(二)高可用设计-复制 复制的概念:Redis的复制简单理解就是一个Redis服务器从另一台Redis服务器复制所有的Redis数据库数据,能保持两台Redis服务器的数据库数据一致 ...

  2. # Volley源码解析(二) 没有缓存的情况下直接走网络请求源码分析#

    Volley源码解析(二) 没有缓存的情况下直接走网络请求源码分析 Volley源码一共40多个类和接口.除去一些工具类的实现,核心代码只有20多个类.所以相对来说分析起来没有那么吃力.但是要想分析透 ...

  3. Cwinux源码解析(二)

    我在我的个人博客上发表了第二篇解析文章.欢迎各位读者批评指正. Cwinux源码解析(二)

  4. Spring事务源码解析(二)获取增强

    在上一篇文章@EnableTransactionManagement注解解析中,我们搭建了源码阅读的环境,以及解析了开启Spring事务功能的注解@EnableTransactionManagemen ...

  5. Netty 源码解析(二):Netty 的 Channel

    本文首发于微信公众号[猿灯塔],转载引用请说明出处 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty源码解析(一):开始 当前:Netty 源码解析(二): Netty 的 Channel ...

  6. AOP源码解析之二-创建AOP代理前传,获取AOP信息

    AOP源码解析之二-创建AOP代理前传,获取AOP信息. 上篇文章对AOP的基本概念说清楚了,那么接下来的AOP还剩下两个大的步骤获取定义的AOP信息,生成代理对象扔到beanFactory中. 本篇 ...

  7. 老生常谈系列之Aop--Spring Aop源码解析(二)

    老生常谈系列之Aop--Spring Aop源码解析(二) 前言 上一篇文章老生常谈系列之Aop--Spring Aop源码解析(一)已经介绍完Spring Aop获取advice切面增强方法的逻辑, ...

  8. Redis源码漂流记(二)-搭建Redis调试环境

    Redis源码漂流记(二)-搭建Redis调试环境 一.目标 搭建Redis调试环境 简要理解Redis命令运转流程 二.前提 1.有一些c知识简单基础(变量命名.常用数据类型.指针等) 可以参考这篇 ...

  9. .Net Core缓存组件(Redis)源码解析

    上一篇文章已经介绍了MemoryCache,MemoryCache存储的数据类型是Object,也说了Redis支持五中数据类型的存储,但是微软的Redis缓存组件只实现了Hash类型的存储.在分析源 ...

随机推荐

  1. [POI2013]MOR-Tales of seafaring

    题目 思博题,发现一旦路径太长我们可以来回走最后一条边,但是这样并不能改变路径长度的奇偶性 所以求一下所有点之间奇最短路和偶最短路就好了,直接暴力\(BFS\)即可 有一个烦人的特判 代码 #incl ...

  2. Idea 2018.2.5创建springboot项目依赖包没有的错误

  3. Georgia and Bob

    Georgia and Bob 给出一个严格递增的正整数数列\(\{a_i\}\),每一次操作可以对于其中任意一个数减去一个正整数,但仍然要保证数列的严格递增性,现在两名玩家轮流操作,不能操作的玩家判 ...

  4. WPF 多语言

    1.http://www.cnblogs.com/bear831204/archive/2009/03/17/1414026.html 2.http://www.cnblogs.com/horan/a ...

  5. ThinkPHP支持模型的分层

    ThinkPHP支持模型的分层 ,除了Model层之外,我们可以项目的需要设计和创建其他的模型层. 大理石平台支架 通常情况下,不同的分层模型仍然是继承系统的\Think\Model类或其子类,所以, ...

  6. Lock方法是用于数据库的锁机制,

    Lock方法是用于数据库的锁机制,如果在查询或者执行操作的时候使用: lock(true); 复制代码   就会自动在生成的SQL语句最后加上 FOR UPDATE或者FOR UPDATE NOWAI ...

  7. 利用refind实现UEFI多系统引导

    使用DiskGenius Pro给ESP分区指定盘符,目的是为了让ESP分区在硬盘上可见 使用BOOTICE工具中的UEFI选项卡中的功能调整引导顺序 修改启动序列-->EFI NetWork- ...

  8. Appium环境安装步骤 + 代码验证环境是否成功

    1.安装Microsoft .NET Framework 4.5 检测本机已安装的程序中,是否已经安装Microsoft .NET Framework 4.5及以上的版本. 如下图所示:   如果没有 ...

  9. svn插件的所有链接

    http://subclipse.tigris.org/servlets/ProjectDocumentList?folderID=2240

  10. 2019-2-13-Latex-论文elsevier,手把手如何用Latex写论文

    title author date CreateTime categories Latex 论文elsevier,手把手如何用Latex写论文 lindexi 2019-02-13 10:38:20 ...