题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k<=100$

神仙单调队列优化$DP$, [NOI2005]瑰丽华尔兹 也有类似的压时间段的套路,但这道题可比那道题难多了。

朴素$O(n^2)$的$DP$没什么好说的,我们要想办法把它优化成$O(nk)$的

定义$f[i][j]$表示第$i$个时间段内,朝上的面(现在没被煎的)被煎的时间是$j$

1.观察翻转的过程,貌似在一个连续的时间段内翻转2次以上就是没有意义的 ,因为可以翻过去再翻回来

2.貌似并不一定要在整数时间翻转,但这种情况只在翻转1次的情况下有意义,所以整体把时间*2

然后,分情况讨论$DP$转移

1.翻0次,朝上的面被煎的时间不变,$f[i][j]=f[i-1][j]$,无需任何优化

2.翻2次,朝上的面被至多额外煎$r_{i}+l_{i}$秒,枚举上一次当前面被煎的时间$k$,可得$f[i][j]=min(f[i][k])+2\;(k<=j)$

对于这种情况,正序枚举$j$,单调队列优化$DP$即可,$j-k>r_{i}+l_{i}$的弹出队列

3.翻1次,原来朝上的面被翻到了下面,设现在的上面是$a$面,下面是$b$面,则$a$面被煎了$j$秒,$b$面被煎了$r_{i}-j$秒

那么上一次$a$面被煎的时间是$k$,此时$a$面朝下,朝上的面是$b$面,被煎的时间是$r_{i-1}-k$,可得$f[i][j]=min(f[i-1][r_{i}-k])+1$

因为是$-k$,要倒序枚举$j$,同样用单调队列优化,$k-j>r_{i}+l_{i}$弹出队列即可

虽然空间能开下$O(nk)$,但用滚动数组跑得飞快

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define N 205
#define M 401000
#define dd double
#define inf 0x3f3f3f3f
#define rint register int
using namespace std; int n,K,cnt;
int l[N],r[N],t[N];
int f[][M],que[M]; int main()
{
scanf("%d%d",&n,&K);
for(int i=;i<=K;i++){
scanf("%d%d",&l[i],&r[i]);
t[++cnt]=l[i]<<,t[++cnt]=r[i]<<;
}
memset(f,0x3f,sizeof(f));
f[][]=;int now=,pst=;
n<<=;
for(int i=;i<=cnt;i++)
{
if(i&) continue;
int hd=,tl=;
for(rint j=;j<=t[i];j++)
f[now][j]=inf;
for(rint j=;j<=t[i];j++)
{
f[now][j]=min(f[now][j],f[pst][j]);
while(hd<=tl&&f[pst][j]<=f[pst][que[tl]])
tl--;
que[++tl]=j;
while(hd<=tl&&j-que[hd]>t[i]-t[i-])
hd++;
f[now][j]=min(f[now][j],f[pst][que[hd]]+);
}
hd=,tl=;
for(rint j=t[i];j>=;j--)
{
while(hd<=tl&&f[pst][t[i]-j]<=f[pst][t[i]-que[tl]])
tl--;
que[++tl]=j;
while(hd<=tl&&que[hd]-j>t[i]-t[i-])
hd++;
f[now][j]=min(f[now][j],f[pst][t[i]-que[hd]]+);
}
swap(now,pst);
}
if(f[pst][n]==inf) printf("Hungry\n");
else printf("Full\n%d\n",f[pst][n]);
return ;
}

CF939F Cutlet (单调队列优化DP)的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  9. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

随机推荐

  1. Django-admin源码解析

    启动 <1>启动django,运行manage.py文件,进行当前项目的环境配置 <2>按照INSTALLED_APPS中的顺序加载APP,首先加载admin 注册 <1 ...

  2. javascript 中一些奇葩的日期换算

    1.获取今天的0时0分0秒(常用于开始日期的获取) new Date(new Date().toLocaleDateString()); // Mon Nov 12 2018 00:00:00 GMT ...

  3. Git:Git入门及基本命令

    Git的结构: Git和代码托管中心 局域网环境下: 1)GitLab服务器 外网环境下: 2)github 3)码云 代码托管中心的任务:维护远程库 本地库和远程库的交互 团队内部协作 跨团队协作 ...

  4. linux环境下删除包含特殊字符的文件或目录

    linux环境下删除包含特殊字符的文件或目录 ls -liUse find command as follows to delete the file if the file has inode nu ...

  5. idea 编辑器 光标问题!(insert键)

    今天写代码不小心按了键盘的insert键,光标莫名闪退了 ,重新打开的时候发现 光标变成了  按了insert 的效果  ,简直无语的要命啊! 这敲代码太恶心了!怒搜资料 结果找到了解决办法! 1.打 ...

  6. IDEA使用快捷键

     sout+TAB键---->System.out.println();你可以按ctrl+j里面各种快捷键模板都可以看到. Intellij Idea get/set方法快捷键:Alt+Inse ...

  7. 洛谷 1052 dp 状态压缩

    洛谷1052 dp 状态压缩 传送门 (https://www.luogu.org/problem/show?pid=1052#sub) 做完这道题之后,感觉涨了好多见识,以前做的好多状压题目都是将一 ...

  8. 百度语音识别服务 —— 语音识别 REST API 开发笔记

    http://blog.csdn.net/lw_power/article/details/51771267

  9. maven打包可运行的jar包(包含依赖工程)

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  10. Struts(19)Struts集成

    Struts2 MVC架构 模型视图控制器(Model View Controller)或MVC,MVC是俗称.是一种软件设计模式,用于开发Web应用程序.模型 - 视图 - 控制器模式是由下面三个部 ...