哎呀这个C怎么比B还水。。。。(我现在大概也就会做点这种水题了吧)

题目链接

https://atcoder.jp/contests/agc031/tasks/agc031_c

题目大意

符号约定: \(count(x)\)表示整数\(x\)在二进制表示下\(1\)的个数。“二进制表示下第\(x\)位”表示位权为\(2^x\)的位。数组下标全部从0开始

给定\(N,A,B\), 求构造一个\([0,2^N-1]\)的排列\(p\), 满足\(p_0=A, p_{2^N-1}=B\), 对于任何\(i\in[1,2^N-1]\), \(count(p_i\ xor\ p_j)=1\).

\(1\le N\le 17\)

题解

注: 这道题“二进制位相差\(1\)个”的这个条件,我们可以用图形象地表示出来,就是一个\(n\)维立方体顶点和棱的几何结构。这样画出来也许有助于理解本题。

首先观察到一些结论。

(1) 如果一个排列\(p\)是合法的,那么把\(p\)中的每个元素异或一个正整数\(x\)之后得到排列\(p'\),排列\(p'\)仍然是合法的。

太显然,不证了。

据此,我们可以令\(B=B\ xor\ A\), 然后构造一个\(p\)满足\(p_0=0, p_{2^N-1}=B\), 最后把答案序列全部\(xor\ A\)

(2) 能构造出以\(0\)开始以\(B\)结束的合法排列当且仅当\(count(B)\equiv 1(\mod 2)\)

证明: \(|count(p_i)-count(p_{i-1})|=1\), 故\(count(p_{2^N-1})\)为奇数。必要性得证。

充分性?我们可以直接按以下方案进行构造

假设我们要解决问题\((n,b)\) (表示大小为\(n\)起始点为\(0\)终止点为\(b\))

分类讨论\(b\)二进制表示下第\((n-1)\)位

若为\(1\), 则我们先在\([0,2^{n-1}-1]\)内构造一个起始点为\(0\)终止点为\(1\)的排列(递归调用问题\((n-1,1)\)),然后从\(1\)这个点一步跳到\(2^{n-1}+1\), 再构造一个\([2^{n-1},2^n-1]\)的起始点为\(2^{n-1}+1\)终止点为\(b\)的排列。这一部分可以递归调用问题\((n-1,b\ xor\ (2^{n-1}+1))\)然后把生成的排列每个位置都异或\(2^{n-1}+1\)解决。

若为\(0\), 情况稍有复杂。我们依然是构造两个排列,第一个排列\(p_1\)由问题\((n-1,a)\)生成, 而我们希望在排列\(p_1\)中塞入另一个排列,而使得新排列仍然合法。考虑\(p_1[0]\)和\(p_1[1]\) (其中\(p_1[0]\)显然为\(0\)), 构造一个排列\(p_2\)值域为\([2^{n-1},2^n-1]\)且起始于\(2^{n-1}\)终止于\(p_1[1]\ xor\ 2^{n-1}\),这一部分可以通过调用问题\((n-1,p_1[1])\)然后给生成排列的每个元素都加上\(2^{n-1}\)完成。然后我们把\(p_2\)接在\(p_1[0]\)和\(p_1[1]\)之间,它就合法了。

时间复杂度\(T(n)=2T(n-1)+O(2^n)\), 解得\(T(n)=O(2^nn)\)

说了这么多,可能不太清楚。。后面我举个例子:(仅展开模拟第一层递归)

例子1: 问题(4,13)的解决
判断出为第一种情况(第3位为1)
首先构造问题(3,1)的排列: 0 4 5 7 6 2 3 1
然后构造问题(3,4)的排列: 0 2 3 1 5 7 6 4,其中4=13 xor 9, 9=2^3+1
问题(3,4)的排列每个数xor 9之后可得: 9 11 10 8 12 14 15 13
前后拼接即可得: 0 4 5 7 6 2 3 1 9 11 10 8 12 14 15 13就是答案 例子2: 问题(4,7)的解决
判断出为第二种情况(第3位为0)
首先构造问题(3,7)的排列p1: 0 2 3 1 5 4 6 7, 发现p1[1]是2
然后构造问题(3,2)的排列: 0 4 6 7 5 1 3 2, 然后每个数+8后可得8 12 14 15 13 9 11 10
然后把这个以8开头以10结束的排列插在p1的0和2之间,得到0 8 12 14 15 13 9 11 10 2 3 1 5 4 6 7就是答案

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; const int N = 17;
int ans[(1<<N)+3];
int cnt[(1<<N)+3];
int tmp[(1<<N)+3];
int n,A,B; void solve(int x,int a,int ret[])
{
if(x==0) {ret[0] = 0; return;}
if(x==1) {ret[0] = 0; ret[1] = 1; return;}
if(a&(1<<(x-1)))
{
solve(x-1,1,ret);
solve(x-1,a^((1<<(x-1))+1),ret+(1<<(x-1)));
for(int i=(1<<(x-1)); i<(1<<x); i++) ret[i] = ret[i]^((1<<(x-1))+1);
}
else
{
solve(x-1,a,ret);
solve(x-1,ret[1],ret+(1<<(x-1)));
for(int i=(1<<(x-1)); i<(1<<x); i++) ret[i] = ret[i]^(1<<(x-1));
tmp[0] = ret[0]; for(int i=0; i<(1<<(x-1)); i++) tmp[i+1] = ret[i+(1<<(x-1))];
for(int i=((1<<(x-1))+1); i<(1<<x); i++) tmp[i] = ret[i-(1<<(x-1))];
for(int i=0; i<(1<<x); i++) ret[i] = tmp[i];
}
} int main()
{
scanf("%d%d%d",&n,&A,&B); B^=A;
for(int i=1; i<(1<<n); i++) cnt[i] = cnt[i>>1]+(i&1);
if((cnt[B]&1)==0) {puts("NO"); return 0;}
puts("YES");
solve(n,B,ans);
for(int i=0; i<(1<<n); i++) ans[i]^=A;
for(int i=0; i<(1<<n); i++) printf("%d ",ans[i]);
return 0;
}

Atcoder AGC031C Differ By 1 Bit (构造、二进制)的更多相关文章

  1. 2018.09.22 atcoder Integers on a Tree(构造)

    传送门 先考虑什么时候不合法. 第一是考虑任意两个特殊点的权值的奇偶性是否满足条件. 第二是考虑每个点的取值范围是否合法. 如果上述条件都满足的话就可以随便构造出一组解. 代码: #include&l ...

  2. Atcoder beginner contest 249 C-Just K(二进制枚举)

    题目大意:给你N个字符串,你可以从中选择任意数量的字符串,请统计在你的字串中,相同字母出现次数正好为K次的字母数.数据保证出现的字母都是小写字母. 1≤N≤15 1 ≤K≤N 一开始读题的时候读错了, ...

  3. 【译】构造和匹配二进制(Efficiency Guide)

    可以通过以下方式有效地构建二进制: my_list_to_binary(List) -> my_list_to_binary(List, <<>>). ​ my_list ...

  4. Java 构造 BSON 数据类型

    Java 构造 BSON 数据类型 整数/符浮点数 Java BSON 构造整数/符浮点数类型 // {a:123, b:3.14} BSONObject obj = new BasicBSONObj ...

  5. 转载:【原译】Erlang构建和匹配二进制数据(Efficiency Guide)

    转自:http://www.cnblogs.com/futuredo/archive/2012/10/19/2727204.html Constructing and matching binarie ...

  6. Erlang 位串和二进制数据

    http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=25876834&id=3300393 因为在本人工作中,服务端Erla ...

  7. Java API 快速速查宝典

    Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...

  8. C#功能扩张方式

    有时候,为了完成一些window的一些操作,需要引入一些dll进行操作 1)  引入系统api进行操作,形如[DllImport("urlmon.dll", CharSet = C ...

  9. 【学习笔记】tensorflow图片读取

    目录 图像基本概念 图像基本操作 图像基本操作API 图像读取API 狗图片读取 CIFAR-10二进制数据读取 TFRecords TFRecords存储 TFRecords读取方法 图像基本概念 ...

随机推荐

  1. K度限制MST poj 1639

    /* k度限制MST:有一个点的度<=k的MST poj 1639 要求1号点的度不超过k 求MST 我们先把1号点扔掉 跑MST 假设有sum个连通分支 然后把这sum个分支连到1上 就得到了 ...

  2. Python入门 六、像个 Pythonista

    pickle import pickle test_data = ['Save me!',123.456,True] f = file('test.data','w') pickle.dump(tes ...

  3. Shredding Company(dfs)

    http://poj.org/problem?id=1416 题意:将一个数分成几部分,使其分割的各个数的和最大并且小于所给的数. 凌乱了..参考的会神的代码..orz... #include < ...

  4. springboot启动报错:Cannot determine embedded database driver class for database type NONE.

    package cn.zb.test; import org.springframework.boot.SpringApplication; import org.springframework.bo ...

  5. c#,Java aes加密

    1.c#版本 /// <summary> /// Aes加密解密.c#版 /// </summary> public class BjfxEncryptHelper { /// ...

  6. Spring的AOP机制---- AOP的注解配置---- AOP的注解配置

    3333隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约隐隐约约噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢噢 ...

  7. Eclipse 添加本地 SVN插件以及运行项目的流程

    去网上下载SVN插件包.里面包含文件如图: 把features和plugins文件夹里面的东西全部复制粘贴到eclipse安装目录下的features和plugins文件夹中就行.然后重启eclips ...

  8. 【转】SQL SERVER 主体,已同步

    转自郭大侠博客:  https://www.cnblogs.com/gered/p/10601202.html 目录 SQL SERVER 基于数据库镜像的主从同步... 1 1.概念... 2 1. ...

  9. 精确获取对象的类型:Object.prototype.toString()

    https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/Object/toString

  10. php全局变量 超全局变量

    php中有许多超全局变量,这意味着它们在一个脚本的全部作用域中都可用.在函数或方法中无需执行 global $variable; 就可以访问它们. 这些超全局变量是: $GLOBALS    引用全局 ...