1 Logistic Regression 简述

Linear Regression 研究连续量的变化情况,而Logistic Regression则研究离散量的情况。简单地说就是对于推断一个训练样本是属于1还是0。那么非常easy地我们会想到概率,对,就是我们计算样本属于1的概率及属于0的概率,这样就能够依据概率来预计样本的情况,通过概率也将离散问题变成了连续问题。

Specifically, we will try to learn a function of the form:

P(y=1|x)P(y=0|x)=hθ(x)=11+exp(−θ⊤x)≡σ(θ⊤x),=1−P(y=1|x)=1−hθ(x).

The function σ(z)≡11+exp(−z) is often called the “sigmoid” or “logistic” function

我们仅仅须要计算y=1的概率就ok了。其Cost Function例如以下:

J(θ)=−∑i(y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))).

除了方程不一样,其它的计算和Linear Regression是全然一样的。

OK,接下来我们来看看练习怎么做。

2 exercise1B 解答

本练习通过使用MNIST的数据来推断手写数字0或者1.
我直接贴出代码:
ex1b_regression.m (无需更改)
addpath ../common
addpath ../common/minFunc_2012/minFunc
addpath ../common/minFunc_2012/minFunc/compiled % Load the MNIST data for this exercise.
% train.X and test.X will contain the training and testing images.
% Each matrix has size [n,m] where:
% m is the number of examples.
% n is the number of pixels in each image.
% train.y and test.y will contain the corresponding labels (0 or 1).
binary_digits = true;
[train,test] = ex1_load_mnist(binary_digits); % Add row of 1s to the dataset to act as an intercept term.
train.X = [ones(1,size(train.X,2)); train.X];
test.X = [ones(1,size(test.X,2)); test.X]; % Training set dimensions
m=size(train.X,2);
n=size(train.X,1); % Train logistic regression classifier using minFunc
options = struct('MaxIter', 100); % First, we initialize theta to some small random values.
theta = rand(n,1)*0.001; % Call minFunc with the logistic_regression.m file as the objective function.
%
% TODO: Implement batch logistic regression in the logistic_regression.m file!
%
%tic;
%theta=minFunc(@logistic_regression, theta, options, train.X, train.y);
%fprintf('Optimization took %f seconds.\n', toc); % Now, call minFunc again with logistic_regression_vec.m as objective.
%
% TODO: Implement batch logistic regression in logistic_regression_vec.m using
% MATLAB's vectorization features to speed up your code. Compare the running
% time for your logistic_regression.m and logistic_regression_vec.m implementations.
%
% Uncomment the lines below to run your vectorized code.
%theta = rand(n,1)*0.001;
tic;
theta=minFunc(@logistic_regression_vec, theta, options, train.X, train.y);
fprintf('Optimization took %f seconds.\n', toc); % Print out training accuracy.
tic;
accuracy = binary_classifier_accuracy(theta,train.X,train.y);
fprintf('Training accuracy: %2.1f%%\n', 100*accuracy); % Print out accuracy on the test set.
accuracy = binary_classifier_accuracy(theta,test.X,test.y);
fprintf('Test accuracy: %2.1f%%\n', 100*accuracy);
logistic_regression.m
function [f,g] = logistic_regression(theta, X,y)
%
% Arguments:
% theta - A column vector containing the parameter values to optimize.
% X - The examples stored in a matrix.
% X(i,j) is the i'th coordinate of the j'th example.
% y - The label for each example. y(j) is the j'th example's label.
% m=size(X,2);
n=size(X,1); % initialize objective value and gradient.
f = 0;
g = zeros(size(theta)); %
% TODO: Compute the objective function by looping over the dataset and summing
% up the objective values for each example. Store the result in 'f'.
%
% TODO: Compute the gradient of the objective by looping over the dataset and summing
% up the gradients (df/dtheta) for each example. Store the result in 'g'.
%
%%% YOUR CODE HERE %%% % Step 1?Compute Cost Function for i = 1:m
f = f - (y(i)*log(sigmoid(theta' * X(:,i))) + (1-y(i))*log(1-...
sigmoid(theta' * X(:,1))));
end for j = 1:n
for i = 1:m
g(j) = g(j) + X(j,i)*(sigmoid(theta' * X(:,i)) - y(i));
end end
ex1_load_mnist.m (无需更改)
function [train, test] = ex1_load_mnist(binary_digits)

  % Load the training data
X=loadMNISTImages('train-images-idx3-ubyte'); % 784x60000 60000张图片28x28pixel
y=loadMNISTLabels('train-labels-idx1-ubyte')'; % 1*60000 if (binary_digits)
% Take only the 0 and 1 digits
X = [ X(:,y==0), X(:,y==1) ]; %通过y==0和y==1直接得到y=0和1的index
y = [ y(y==0), y(y==1) ];
end % Randomly shuffle the data
I = randperm(length(y));
y=y(I); % labels in range 1 to 10
X=X(:,I); % We standardize the data so that each pixel will have roughly zero mean and unit variance.
s=std(X,[],2); %?? std??X??? m=mean(X,2);
X=bsxfun(@minus, X, m);
X=bsxfun(@rdivide, X, s+.1); % 就是计算(x-m)/s 加0.1是为了防止分母为0 % Place these in the training set
train.X = X;
train.y = y; % Load the testing data
X=loadMNISTImages('t10k-images-idx3-ubyte');
y=loadMNISTLabels('t10k-labels-idx1-ubyte')'; if (binary_digits)
% Take only the 0 and 1 digits
X = [ X(:,y==0), X(:,y==1) ];
y = [ y(y==0), y(y==1) ];
end % Randomly shuffle the data
I = randperm(length(y));
y=y(I); % labels in range 1 to 10
X=X(:,I); % Standardize using the same mean and scale as the training data.
X=bsxfun(@minus, X, m);
X=bsxfun(@rdivide, X, s+.1); % Place these in the testing set
test.X=X;
test.y=y;

【说明:本文为原创文章,转载请注明出处:blog.csdn.net/songrotek 欢迎交流QQ:363523441】

深度学习 Deep LearningUFLDL 最新Tutorial 学习笔记 2:Logistic Regression的更多相关文章

  1. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  2. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 5:Softmax Regression

    Softmax Regression Tutorial地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ 从本节開始 ...

  3. Stanford机器学习笔记-2.Logistic Regression

    Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2.2.1 Interpretin ...

  4. 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

    1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...

  5. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization

    1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...

  6. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 4:Debugging: Gradient Checking

    1 Gradient Checking 说明 前面我们已经实现了Linear Regression和Logistic Regression.关键在于代价函数Cost Function和其梯度Gradi ...

  7. 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)

    1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...

  8. Coursera台大机器学习课程笔记9 -- Logistic Regression

    如果只想得到某种概率,而不是简单的分类,那么该如何做呢?在误差衡量问题上,如何选取误差函数这段很有意思. 接下来是如何最小化Ein,由于Ein是可凸优化的,所以采用的是梯度下降法:只要达到谷底,就找到 ...

  9. Coursera台大机器学习技法课程笔记05-Kernel Logistic Regression

    这一节主要讲的是如何将Kernel trick 用到 logistic regression上. 从另一个角度来看soft-margin SVM,将其与 logistic regression进行对比 ...

随机推荐

  1. Vuex-一个专为 Vue.js 应用程序开发的状态管理模式

    为什么会出现Vuex 非父子关系的组件如何进行通信?(Event Bus)bus.js import Vue from 'vue'; export default new Vue(); foo.vue ...

  2. 洛谷 P1176 路径计数2

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...

  3. Android插件实例——360 DroidPlugin具体解释

    在中国找到钱不难,但你的一个点子不意味着是一个创业.你谈一个再好的想法,比方我今天谈一个创意说,新浪为什么不收购GOOGLE呢?这个创意非常好.新浪一收购GOOGLE.是不是新浪就变成老大了?你从哪儿 ...

  4. Qt creator 编译错误 :cannot find file .pro qt

    事实上问题的解决的方法非常easy:就是Qt不支持中文的路径,把源代码的路径所有改成英文就可以解决这个问题. 首先问题发生在我执行网上的样例程序时,又一次构建编译也是出错.提示: Cannot fin ...

  5. 在Maven项目中关于SSM框架中邮箱验证登陆

    1.你如果要在maven项目中进行邮箱邮箱验证,你首先要先到pom.xml文件中配置mail.jar,activation.jar包 <dependency> <groupId> ...

  6. poj1062 Bellman 最短路应用

    昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 41066   Accepted: 11959 Descripti ...

  7. [Java][log4j]支持同一时候按日期和文件大小切割日志

    依据DailyRollingFileAppender和RollingFileAppender改编,支持按日期和文件大小切割日志.  源文件: package com.bao.logging; impo ...

  8. GitHub开源控件的使用合集

    Android的加载动画AVLoadingIndicatorView 项目地址: https://github.com/81813780/AVLoadingIndicatorView 首先,在 bui ...

  9. WCF项目启动时错误处理

    1. 原因:启动有wcf服务的项目时,报错,是因为wcf的服务没有启动. 解决办法:启动wcf的服务端口,127.0.0:4000,错误消失.

  10. [Chromium文档转载,第004章]Mojo Synchronous Calls

    For Developers‎ > ‎Design Documents‎ > ‎Mojo‎ > ‎ Synchronous Calls Think carefully before ...