[NOIP2013提高组]货车运输
题目:洛谷P1967、Vijos P1843、codevs3287。
题目大意:有n个城市m条道路,每条道路有一个限重,规定货车运货不能超过限重。有一些询问,问你两个城市之间一次最多能运多少重的货(可能无法到达)。
解题思路:首先,要保证原来连通的点连通,限重要尽可能大,所以最大生成树。然后对每个询问找两个点的最近公共祖先,然后求出两点路径上最大限重的最小值即可。
用倍增求LCA,可以边算边求出最小值,不用用一些复杂的方法。代码中我用sml[x][i]表示x和它的第$2^i$个祖先之间的路径上最大限重的最小值。然后在倍增时更新答案即可。详见代码
C++ Code:
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cstdio>
using std::sort;
using std::swap;
struct edge{
int u,v,t;
bool operator < (const edge& rhs)const{return t>rhs.t;}
}e[50005];
struct tree_edge{
int to,dist,nxt;
}E[120005];
int n,m,fa[10005],head[10005]={0},cnt=0,ans,deep[10005],p[10005][16],sml[10005][16];
inline int min(int a,int b){return(a<b)?(a):(b);}
inline int readint(){
char c=getchar();
int p=0;
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())p=(p<<3)+(p<<1)+(c^'0');
return p;
}
int dad(int x){return(fa[x]==x)?(x):(fa[x]=dad(fa[x]));}
inline int addedge(int from,int to,int dist){
E[++cnt]=(tree_edge){to,dist,head[from]};
head[from]=cnt;
E[++cnt]=(tree_edge){from,dist,head[to]};
head[to]=cnt;
}
void dfs(int u){
for(int i=head[u];i;i=E[i].nxt)
if(!deep[E[i].to]){
deep[E[i].to]=deep[u]+1;
p[E[i].to][0]=u;
sml[E[i].to][0]=E[i].dist;
dfs(E[i].to);
}
}
void init(){
for(int j=1;(1<<j)<=n;++j)
for(int i=1;i<=n;++i)
if(p[i][j-1]!=-1)
p[i][j]=p[p[i][j-1]][j-1],sml[i][j]=min(sml[i][j-1],sml[p[i][j-1]][j-1]);
}
int lca(int x,int y,int& ans){
ans=2000000000;
int i;
if(deep[x]<deep[y])swap(x,y);
for(i=0;(1<<i)<=n;++i);--i;
for(int j=i;j>=0;--j)
if(deep[p[x][j]]>=deep[y]){
ans=min(ans,sml[x][j]),x=p[x][j];
}
if(x==y)return x;
for(int j=i;j>=0;--j)
if(p[x][j]!=p[y][j]&&p[x][j]!=-1){
ans=min(ans,min(sml[x][j],sml[y][j]));
x=p[x][j];
y=p[y][j];
}
ans=min(ans,min(sml[x][0],sml[y][0]));
return p[x][0];
}
int main(){
n=readint(),m=readint();
for(int i=1;i<=m;++i)e[i].u=readint(),e[i].v=readint(),e[i].t=readint();
sort(e+1,e+m+1);
for(int i=1;i<=n;++i)fa[i]=i;
for(int okE=1,now=1;now<=m;++now){
int a=dad(e[now].u),b=dad(e[now].v);
if(a!=b){
fa[b]=a;
addedge(e[now].u,e[now].v,e[now].t);
++okE;
}
if(okE==n)break;
}
int Q=readint();
memset(deep,0,sizeof deep);
memset(p,-1,sizeof p);
memset(sml,0x3f,sizeof sml);
for(int i=1;i<=n;++i)
if(!deep[i]){
deep[i]=1;
dfs(i);
}
init();
while(Q--){
int x=readint(),y=readint();
int a=dad(x),b=dad(y);
if(a!=b){
puts("-1");
continue;
}
lca(x,y,ans);
printf("%d\n",ans);
}
}
[NOIP2013提高组]货车运输的更多相关文章
- [NOIP2013 提高组] 货车运输
前言 使用算法:堆优化 \(prim\) , \(LCA\) . 题意 共有 \(n\) 个点,有 \(m\) 条边来连接这些点,每条边有权值.有 \(q\) 条类似于 \(u\) \(v\) 询问, ...
- [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路
[NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...
- [NOIP2013 提高组] 华容道 P1979 洛谷
[NOIP2013 提高组] 华容道 P1979 洛谷 强烈推荐,更好的阅读体验 经典题目:spfa+bfs+转化 题目大意: 给出一个01网格图,和点坐标x,y空格坐标a,b,目标位置tx,ty要求 ...
- 【NOIP2013提高组】货车运输
货车运输 (truck.cpp/c/pas) [问题描述] A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆 ...
- 洛谷P1967 [NOIP2013提高组Day1T2]货车运输
P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...
- [NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)
一开始觉得是网络流..仔细一看应该是最短路,再看数据范围..呵呵不会写...这道题是最大生成树+最近公共祖先.第一次写..表示各种乱.. 因为要求运输货物质量最大,所以路径一定是在最大生成树上的.然后 ...
- NOIP2013 提高组 Day1
https://www.luogu.org/problem/lists?name=&orderitem=pid&tag=83%7C30 期望得分:100+100+100=300 实际得 ...
- 【NOIP2013提高组T3】加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- noip2013 提高组
T1 转圈游戏 题目传送门 果不其然 第一题还是模拟题 一波快速幂解决问题 #include<cstdio> #include<cstring> #include<alg ...
随机推荐
- hadoop 2.6.0 分布式 + Spark 1.1.0 集群环境
配置jdk 执行 sudo apt-get install openjdk-7-jdk jdk被安装到了 /usr/lib/jvm/ 目录 配置hosts 使用 vim 打开 /etc/hosts, ...
- 编程语言与Python学习(二)
1.1 流程控制之for循环 1 迭代式循环:for,语法如下 for i in range(10): 缩进的代码块 2 break与continue(同上) 3 循环嵌套 for i in rang ...
- JOSN快速入门
1.JSON介绍 (1)JSON是一种与开发语言无关的,轻量级的数据格式,全称 JavaScript Object Notation,易于阅读和编写,语言解析和生产 (2)JSON数据类型表示 数据 ...
- hiho 1571 - 贪心好题*
题目链接 小Hi在帮助钢铁侠开发新的盔甲.这套新盔甲一共包含M种武器插槽,其中第i种插槽有Ci个.每个插槽最多安装一个武器模块. 小Hi一共准备了N个武器模块,编号1~N.每个武器模块都有三个参数Vi ...
- 初识Git(三)
这次要记录一下对branch,merge的学习. 与先前一样创建一个pro文件夹,initi该文件夹,在该文件夹中新建一个空的MainCode.txt,然后add文本文件并且commit. 接下来我们 ...
- 用MyBatis进行数据库的增删改查
前提是MyBatis环境部署好了,参考地址: https://www.cnblogs.com/package-java/p/10316536.html 为了方便演示,我提前在数据库插入了数据方便查询 ...
- axios使用方法
npm install axios 创建文件夹api/index.js import axios from 'axios'; let http = axios.create({ baseURL: '' ...
- [BZOJ3673&3674]可持久化并查集&加强版
题目大意:让你实现一个可持久化的并查集(3674强制在线). 解题思路:刚刚介绍了一个叫rope的神器:我是刘邦,在这两题(实际上两题没什么区别)就派上用场了. 正解应该是主席树||可持久化平衡树,然 ...
- python基础4(小数据池,编码,深浅拷贝)
1.==与is == 比较值是否相等 is比较内存地址是否相同 2.小数据池 为了节省内存,当数据在一个范围里的时候,两个值相同的变量指向的是小数据池里的同一个地址 数字范围:-5 ~ 256 num ...
- 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...