numpy 辨异(三)—— hstack/column_stack,linalg.eig/linalg.eigh
1. np.hstack np.column_stack
>>> np.hstack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([1, 2, 3, 4, 5, 6])
>>> np.column_stack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 4],
[2, 5],
[3, 6]])
当然对等地,也存在,np.vstack, np.row_stack
>>> np.vstack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 2, 3],
[4, 5, 6]])
>>> np.row_stack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 2, 3],
[4, 5, 6]])
# 两者近乎等效
2. np.linalg.eig() np.linalg.eigh()
首先一点,不管二者处理的是不是对称阵,两者处理的首先是方阵(square array)。
两者均用于矩阵特征分解,np.linalg.eigh()适用于对称矩阵,可见矩阵分析中针对对称矩阵的特征值分解有一套特殊的不同于一般矩阵的理论。
def main():
X = np.random.randn(3, 3)
X = X.triu()
X += (X.T-np.diag(X.diagonal()))
# 构造对称矩阵 X
Lambda1, Q1 = np.linalg.eig(X)
Lambda2, Q2 = np.linalg.eigh(X)
print(Lambda1)
# [ 1.53176315 -0.35907022 -1.8924684 ]
# 排序不太严格
print(Lambda2)
# [-1.8924684 -0.35907022 1.53176315]
# 严格的升序
if __name__ == '__main__':
main()
3. array.T vs array.transpose()
形式上array.T自然比array.transpose()这样一个函数调用形式稍显简洁。
>>> x = np.ones((3, 4))
>>> x.T
array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> x.transpose()
array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
事实上,x.T == x.transpose(range(x.ndim)[::-1])
>>> x.transpose(range(x.ndim)[::-1])
array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
4. np.triu np.tril
np.triu:upper triangle of an array
np.tril:lower triangle of an array
>>> x = np.array([[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]])
>>> x
array([[1, 2, 3],
[3, 4, 5],
[5, 6, 7],
[7, 8, 9]])
>>> np.triu(x)
array([[1, 2, 3],
[0, 4, 5],
[0, 0, 7],
[0, 0, 0]])
>>> np.tril(x)
array([[1, 0, 0],
[3, 4, 0],
[5, 6, 7],
[7, 8, 9]])
5. concatenate与hstack/vstack
注意,要进行拼接的数组都是以tuple_like((a, b))
的形式传递给这三个函数的,
np.concatenate((a, b), axis=0) == np.vstack((a, b))
# 也对应于默认的情况,np.concatenate((a, b))
np.concatenate((a, b), axis=1) == np.hstack((a, b))
numpy 辨异(三)—— hstack/column_stack,linalg.eig/linalg.eigh的更多相关文章
- numpy 辨异(四)—— np.repeat 与 np.tile
>> import numpy as np >> help(np.repeat) >> help(np.tile) 二者执行的是均是复制操作: np.repeat: ...
- numpy 辨异(二) —— np.identity()/np.eye()
import numpy as np; 两者在创建单位矩阵上,并无区别,两者的区别主要在接口上: np.identity(n, dtype=None):只能获取方阵,也即标准意义的单位阵: np.ey ...
- Numpy入门(三):Numpy概率模块和线性代数模块
Numpy中经常使用到的两个模块是概率模块和线性代数模块,random 和 linalg 两个模块. 概率模块 产生二项分布的随机数:np.random.binomial(n,p,size=-),其中 ...
- NumPy学习笔记 三 股票价格
NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...
- numpy.linalg.eig
1.转置对于二维数组有用,对一位数组无效 2.理解特征值和特征向量的对应关系 a=np.array([[1 ,2, 3],[4, 5, 6],[7, 8, 9]]) a Out[27]: array( ...
- numpy中stack、hstack,vstack,dstack函数功能解释
https://blog.csdn.net/Riverhope/article/details/78922006 https://blog.csdn.net/ygys1234/article/deta ...
- 【python】Numpy中stack(),hstack(),vstack()函数详解
转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...
- Numpy中的三个常用正态分布相关的函数,randn,standard_normal, normal的区别
这三个函数都可以返回随机正态分布(高斯Gaussian 分布)的数组,都可以从numpy.random中导出 先看三个函数的参数方式: randn: randn(d0, d1, ..., dn), 返 ...
- NumPy 学习 第三篇:矢量化和广播
矢量化 矢量化是指用数组表达式替换显式的for循环.在Python中循环数组或其他跟数组类似的数据结构时,使用循环会涉及很多开销.NumPy中的矢量化操作把内部循环委托给高度优化的C和Fortran函 ...
随机推荐
- Android(Lollipop/5.0) Material Design(一) 简单介绍
Material Design系列 Android(Lollipop/5.0)Material Design(一) 简单介绍 Android(Lollipop/5.0)Material Design( ...
- C++——多态性实现机制
C++的多态性实现机制剖析 1. 多态性和虚函数 #include <iostream.h> class animal { public: void sleep() { cout<& ...
- sublime找到成对标签(Ctrl+Shift+")
sublime找到成对标签(Ctrl+Shift+") windows版本默认快捷键是Ctrl+Shift+" sublime text怎么突出显示成对标签 使用BracketHi ...
- [Node] Catch error for async await
When we try to do MongoDB opration, mongoose return Promise, we can use async/await to simply the co ...
- Linux环境编程之共享内存区(一):共享内存区简单介绍
共享内存区是可用IPC形式中最快的.一旦内存区映射到共享它的进程的地址空间,进程间数据的传递就不再涉及内核.然而往该共享内存区存放信息或从中取走信息的进程间通常须要某种形式的同步.不再涉及内核是指:进 ...
- 【Codeforces Round #185 (Div. 2) C】The Closest Pair
[链接] 链接 [题意] 让你构造n个点,去hack一种求最近点对的算法. [题解] 让x相同. 那么那个剪枝就不会起作用了. [错的次数] 在这里输入错的次数 [反思] 在这里输入反思 [代码] # ...
- IQueryFielter接口
IQueryFilter基于属性查询过滤数据.需要定义一个where子句.可以指定要返回值的字段列表.如果没有指定列,将返回所有值.当需要根据属性值和属性的关系过滤数据时,使用该接口. 成员 AddF ...
- 闪回drop恢复表后sql运行计划异常
-----正常运行计划 set autotrace traceonly set linesize 1000 select /*+index(t idx_object_id)*/ * from t wh ...
- ng-cli搭建angular项目框架
原文地址 https://www.jianshu.com/p/0a8f4b0f29b3 环境准备 以下步骤都不需要事先创建文件夹,只是环境的准备过程,只有到需要搭建项目的时候才需要创建文件夹用来存放项 ...
- [乐意黎原创] eclipse Kepler Selected SVN connector library is not available or cannot be loaded
问题描写叙述:已经安装了subversive,可是在从SCM导入maven项目时.还是提示报错(如标题),依据报错原因发如今Team>SVN中确实没有svn连接器. 折腾了半天, 硬是没有结果. ...