MCMC:Gibbs 采样(matlab 实现)
MCMC: The Gibbs Sampler
多元高斯分布的边缘概率和条件概率
Marginal and conditional distributions of multivariate normal distribution
clear, clc
rng('default')
num_samples = 5000;
num_dims = 2;
mu = [0, 0];
rho(1) = .8; rho(2) = .8;
prop_sigma = 1;
minn = [-3, -3]; maxx = [3, 3];
x = zeros(num_samples, num_dims);
x(1, 1) = unifrnd(minn(1), maxx(1));
x(1, 2) = unifrnd(minn(2), maxx(2));
t = 1;
dims = 1:num_dims;
while t < num_samples
t = t + 1;
T = [t-1, t]; % 时刻信息的维护,T(1):上一时刻,T(2):下一时刻
for iD = 1:num_dims
not_idx = (dims ~= iD);
mu_cond = mu(iD) + rho(iD)*(x(T(iD), not_idx) - mu(not_idx));
sigma_cond = sqrt(1-rho(iD)^2);
x(t, iD) = normrnd(mu_cond, sigma_cond);
end
end
figure;
h1 = scatter(x(:, 1), x(:, 2), 'r.');
hold on
for t=1:50
plot([x(t, 1), x(t+1, 1)], [x(t, 2), x(t, 2)], 'k-'); % x 轴方向移动,
plot([x(t+1, 1), x(t+1, 1)], [x(t, 2), x(t+1, 2)], 'k-'); % y 轴方向移动;
h2 = plot(x(t+1, 1), x(t+1, 2), 'ko');
end
h3 = scatter(x(1, 1), x(1, 2), 'go', 'linewidth', 3);
legend([h1, h2, h3], {'Samples', '1st 50 samples', 'x(t=0)'}, 'location', 'northwest');
hold off;
xlabel('x_1'); ylabel('x_2')
axis square
MCMC:Gibbs 采样(matlab 实现)的更多相关文章
- MC, MCMC, Gibbs采样 原理&实现(in R)
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...
- Gibbs采样
(学习这部分内容大约需要50分钟) 摘要 Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重 ...
- MCMC随机采样
1 MCMC蒙特卡罗方法 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多 ...
- MCMC(四)Gibbs采样
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好 ...
- 如何做Gibbs采样(how to do gibbs-sampling)
原文地址:<如何做Gibbs采样(how to do gibbs-sampling)> 随机模拟 随机模拟(或者统计模拟)方法最早有数学家乌拉姆提出,又称做蒙特卡洛方法.蒙特卡洛是一个著名 ...
- 文本主题模型之LDA(二) LDA求解之Gibbs采样算法
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇, ...
- MCMC等采样算法
一.直接采样 直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样.因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样. 假设y服从某项分布p(y),其累积 ...
- 关于LDA的gibbs采样,为什么可以获得正确的样本?
算法里面是随机初始了一个分布,然后进行采样,然后根据每次采样的结果去更新分布,之后接着采样直到收敛. 1.首先明确一下MCMC方法. 当我们面对一个未知或者复杂的分布时,我们经常使用MCMC方法来进行 ...
- MCMC&Gibbs sampling
Note of Markov Chain Monte Carlo and Gibbs Sampling : http://pan.baidu.com/s/1jHpWY1o 序:A major lim ...
- 多普勒失真信号采样Matlab模拟分析
多普勒失真信号采样Matlab模拟分析 方案 水声通信指的是使用声信号在水中数据传输. 相对而言.电磁信号在水中吸收严重衰减过快,光信号受水中悬浮颗粒的影响,也无法完毕远距离传输. 这两种信号的传播距 ...
随机推荐
- 配置spotlight连接linux服务器
本文转自(https://blog.csdn.net/qq_31391261/article/details/79429098) 一.配置spotlight连接linux服务器 1.以管理员身份运行软 ...
- [Phonegap+Sencha Touch] 移动开发76 让cordova app訪问远端站点也能调用cordova插件功能
原文链接:http://blog.csdn.net/lovelyelfpop/article/details/50735395 我相信.应该会有一些cordova开发人员想过实现以下这种app: 使用 ...
- 不安装谷歌市场,下载谷歌市场中的APK
不安装谷歌市场,下载谷歌市场中的APK GooglePlayStore 是谷歌官方的的应用市场,有的时候还是需要从谷歌市场下载APK文件.国内的安卓手机厂商都不自带GooglePlay,甚至一些手机& ...
- amazeui学习笔记一(开始使用4)--Web App 相关
amazeui学习笔记一(开始使用4)--Web App 相关 一.总结 1.桌面图标(Touch icon)解决方案:终极方案:link标签的rel和href属性: <link rel=&qu ...
- ASP.net 环境搭建
https://www.cnblogs.com/leizhanjun/p/6081928.html
- CentOS6.X安装10G需要额外安装的软件包
yum -y install libXp yum -y install libXp.i686 yum -y install libXtst.i686
- JavaScript---call()使用的一些疑问
疑问:在使用.call()时,调用对象到底是否可以直接拥有了被调用者的方法和属性? 这里输出结果为:ReferenceError: o is not defined function Person(n ...
- Flask项目之手机端租房网站的实战开发(三)
说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 接着上一篇博客继续往下写 :https://blog.csdn.net/qq_41782425/article/details/8 ...
- Mongodb总结3-稍微封装一下
上次发表的2,纯粹是Demo,演示API的用法. 今天,稍微封装了下,看得更清楚. 考虑到不容易做得很有通用性,所以封装的一般,换种场景需要直接修改代码,但是有一部分是可以复用的. 最近项目,很可能只 ...
- Fragment事务管理源代码分析
转载请标明出处:http://blog.csdn.net/shensky711/article/details/53132952 本文出自: [HansChen的博客] 概述 在Fragment使用中 ...