HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586
unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road
connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
2
3 2
1 2 10
3 1 15
1 2
2 3 2 2
1 2 100
1 2
2 1
10
25
100
100
题意:
一个村庄有 n 个房子和 n-1 条双向路,每两个房子之间都有一条简单路径。
如今有m次询问。求两房子之间的距离。
PS:
能够用LCA来解,首先找到u, v 两点的lca,然后计算一下距离值就能够了。
计算方法是。记下根结点到随意一点的距离dis[i],
这样ans = dis[u] + dis[v] - 2 * dis[lca(v, v)]了。
这题要用c++交。G++会爆栈!
代码例如以下:看别人的模板(tarjan 离线)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 40047
#define maxm 247 struct node
{
int to,w,next;
} edge[maxn*2]; int n, m; //点数,询问次数
int head[maxn];
int k;
int fa[maxn]; //父亲结点
int dis[maxn]; //到根节点距离
int vis[maxn]; //是否訪问过
int s[maxm]; //询问起点
int e[maxm]; //询问终点
int lca[maxm]; //LCA(s,e) 近期公共祖先 int find(int x)
{
if(fa[x]!=x) return fa[x]=find(fa[x]);
return fa[x];
} void init()
{
k = 1;
memset(head,0,sizeof(head));
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
} void add(int u,int v,int w)
{
edge[k].to = v;
edge[k].w = w;
edge[k].next = head[u];
head[u] = k++;
} void tarjan(int u)
{
int i,v;
fa[u] = u;
vis[u] = 1;
for(i = 0; i < m; i++)
{
if(e[i]==u && vis[s[i]])
lca[i] = find(s[i]); //若询问的两点中有一点已被訪问过。则两点的LCA则为这一点的当前父节点
if(s[i]==u && vis[e[i]])
lca[i] = find(e[i]);
}
for(i = head[u]; i; i = edge[i].next)
{
v = edge[i].to;
if(!vis[v]) //若没被訪问过
{
dis[v] = dis[u]+edge[i].w;//更新距离
tarjan(v);
fa[v] = u;//回溯更新父节点
}
}
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
int u, v, w;
for(int i = 0; i < n-1; i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
for(int i = 0; i < m; i++)
{
scanf("%d%d",&s[i],&e[i]);
}
tarjan(1); for(int i = 0; i < m; i++)
{
printf("%d\n",dis[s[i]]+dis[e[i]]-2*dis[lca[i]]);//两点距离为根节点到两点距离之和-根节点到LCA距离*2
}
}
return 0;
}
(ST在线算法 转)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
//#pragma comment(linker, "/STACK:102400000,102400000") //不须要申请系统栈
const int N = 40010;
const int M = 25;
int dp[2*N][M]; //这个数组记得开到2*N,由于遍历后序列长度为2*n-1
bool vis[N];
struct edge
{
int u,v,w,next;
} e[2*N];
int tot,head[N];
inline void add(int u ,int v ,int w ,int &k)
{
e[k].u = u;
e[k].v = v;
e[k].w = w;
e[k].next = head[u];
head[u] = k++;
u = u^v;
v = u^v;
u = u^v;
e[k].u = u;
e[k].v = v;
e[k].w = w;
e[k].next = head[u];
head[u] = k++;
}
int ver[2*N],R[2*N],first[N],dir[N];
//ver:节点编号 R:深度 first:点编号位置 dir:距离
void dfs(int u ,int dep)
{
vis[u] = true;
ver[++tot] = u;
first[u] = tot;
R[tot] = dep;
for(int k=head[u]; k!=-1; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v , w = e[k].w;
dir[v] = dir[u] + w;
dfs(v,dep+1);
ver[++tot] = u;
R[tot] = dep;
}
}
void ST(int n)
{
for(int i=1; i<=n; i++)
dp[i][0] = i;
for(int j=1; (1<<j)<=n; j++)
{
for(int i=1; i+(1<<j)-1<=n; i++)
{
int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
dp[i][j] = R[a]<R[b]?a:b;
}
}
}
//中间部分是交叉的。
int RMQ(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1)
k++;
int a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
return R[a]<R[b]?a:b;
} int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
} int main()
{
//freopen("Input.txt","r",stdin);
//freopen("Out.txt","w",stdout);
int cas;
scanf("%d",&cas);
while(cas--)
{
int n,q,num = 0;
scanf("%d%d",&n,&q);
memset(head,-1,sizeof(head));
memset(vis,false,sizeof(vis));
for(int i=1; i<n; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,num);
}
tot = 0;
dir[1] = 0;
dfs(1,1);
/*printf("节点ver "); for(int i=1; i<=2*n-1; i++) printf("%d ",ver[i]); cout << endl;
printf("深度R "); for(int i=1; i<=2*n-1; i++) printf("%d ",R[i]); cout << endl;
printf("首位first "); for(int i=1; i<=n; i++) printf("%d ",first[i]); cout << endl;
printf("距离dir "); for(int i=1; i<=n; i++) printf("%d ",dir[i]); cout << endl;*/
ST(2*n-1);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
int lca = LCA(u,v);
printf("%d\n",dir[u] + dir[v] - 2*dir[lca]);
}
}
return 0;
}
HDU 2586 How far away ?(LCA模板 近期公共祖先啊)的更多相关文章
- LCA模板 ( 最近公共祖先 )
LCA 有几种经典的求取方法.这里只给出模板,至于原理我完全不懂. 1.RMQ转LCA.复杂度O(n+nlog2n+m) 大致就是 DFS求出欧拉序 => 对欧拉序做ST表 => LCA( ...
- UVA - 11354Bond最小生成树,LCA寻找近期公共祖先
看懂题目意思.他的意思是求将全部的城市走一遍,危急度最小.而且给 你两个s,t后让你求在走的时候,从s到t过程中危急度最大的值,并输出它, 然后就是怎样攻克了,这个题目能够说简单,也能够说难 通过思考 ...
- LintCode 近期公共祖先
中等 近期公共祖先 查看执行结果 34% 通过 给定一棵二叉树,找到两个节点的近期公共父节点(LCA). 近期公共祖先是两个节点的公共的祖先节点且具有最大深度. 您在真实的面试中是否遇到过这个题? Y ...
- 连通分量模板:tarjan: 求割点 && 桥 && 缩点 && 强连通分量 && 双连通分量 && LCA(近期公共祖先)
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...
- LCA近期公共祖先
LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...
- POJ 1470 Closest Common Ancestors【近期公共祖先LCA】
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013912596/article/details/35311489 题目链接:http://poj ...
- 近期公共祖先(LCA)——离线Tarjan算法+并查集优化
一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...
- LCA 近期公共祖先 小结
LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...
- POJ1330Nearest Common Ancestors——近期公共祖先(离线Tarjan)
http://poj.org/problem? id=1330 给一个有根树,一个查询节点(u,v)的近期公共祖先 836K 16MS #include<iostream> #includ ...
随机推荐
- 关于每次取PC的值为PC+4的问题
关于ARM的书上常说由于流水线特性,在指令执行期间读取程序计数器时,读出的值需要为当前指令+4 一开始总是不理解,今天被一位大神一语道破其中精髓.... 程序计数器(PC)总是指向“正在取指”的指令 ...
- RPC与REST
RPC与REST (摘自网络,个人理解)
- 反射找Controller中的方法
/// <summary> /// 根据接口编码APICode,调用相应的webapi方法,注意返回值是json字符串 /// </summary> /// <param ...
- CSS的常用属性(三)
静态定位 position: static (默认) 标准流 绝对定位 position: absolute 特点: 元素使用绝对定位之后,不占据原来的位置(脱标) 元素使用绝对定位,位置是从浏览器出 ...
- 关于ListView中item与子控件抢夺焦点的解决方法
1.在开发中,listview可以说是我们使用最频繁的控件之一了,但是关于listview的各种问题也是很多.当我们使用自定义布局的Listview的时候,如果在item的布局文件里面存在Button ...
- ie8及其以下版本兼容性问题之input file隐藏上传文件
文件上传时,默认的file标签很难看,而且每个浏览器下都有很大差距.因此我们基本都把真正的file标签给隐藏,然后创建一个标签来替代它.但是由于IE出于安全方面的考虑上传文件时必须点击file的浏览按 ...
- java ---书写自己的名字
public class hello { public static void main(String[] args) { // TODO 自动生成的方法存根 System.out.println(& ...
- 国内DNS服务器地址
114DNS114.114.114.114114.114.115.115 腾讯119.29.29.29 百度180.76.76.76 阿里223.5.5.5223.6.6.6 [THE END]
- CNN结构:MXNet设计和实现简介
对原文有大量修改,如有疑惑,请移步原文. 参考链接:MXNet设计和实现简介 文章翻译于:https://mxnet.incubator.apache.org/architecture/index.h ...
- Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)
终于找到ML日报的微信链接,抄之...................................... 请拜访原文链接:[祖母论与还原论之争]为什么计算机人脸识别注定超越人类?评价: ...