线性回归(linear regression)实践篇

之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了。

这次打算以该课程的作业为主线,对机器学习基本知识做一下总结。小弟才学疏浅,如有错误。敬请指导。

问题原描写叙述:

you will implement linear regression with one
variable to predict prots for a food truck. Suppose you are the CEO of a
restaurant franchise and are considering dierent cities for opening a new
outlet. The chain already has trucks in various cities and you have data for
prots and populations from the cities.

简单来说,就是依据一个城市的人口数量,来预測一辆快餐车能获得的利益。

数据集大概是这样子的:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

一行数据为一个样本。第一列表示人口,第二列表示利益。

首先。先把数据可视化。

%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); figure; % open a new figure window plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
ylabel('Profit in $10,000s'); % Set the y label
xlabel('Population of City in 10,000s'); % Set the x label % ============================================================ end

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

计算cost function

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
H = X*theta;
diff = H - y;
%J = sum(diff.^2)/(2*m);
J = sum(diff.*diff)/(2*m); % ========================================================================= end

为了方便理解上面代码,看看各变量大概长什么样子的。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

梯度下降法计算參数theta

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% H = X*theta-y;
theta(1) = theta(1) - sum(H.* X(:,1))*alpha/m;%感觉这样写挺搓的
theta(2) = theta(2) - sum(H.* X(:,2))*alpha/m;
%theta = theta - alpha * (X' * (X * theta - y)) / m; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end

难以理解的是theta = theta - alpha * (X' * (X * theta - y)) / m; 这样的向量化算法。

先看看theta本质是怎么计算的

再看看各变量长什么样子的

算出theta之后,就能够画出拟合直线了。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

注:本文作者linger,如有转载。请标明转载于http://blog.csdn.net/lingerlanlan。

本文链接:http://blog.csdn.net/lingerlanlan/article/details/32162559

从零单排入门机器学习:线性回归(linear regression)实践篇的更多相关文章

  1. 从零单排入门机器学习:Octave/matlab的经常使用知识之矩阵和向量

    Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一 ...

  2. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  4. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  5. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  6. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

随机推荐

  1. redis集群部署及常用的操作命令_01

    简单说下自己测试搭建简单的redis集群的大体步骤: 1.首先你的有6个redis(官方说最少6个,3master,3slave),可以先在一台机器上搭建,搭建到多台上应该只需要改变启动命令即可(可能 ...

  2. 彻底弄懂px em rem

    国内的设计师大都喜欢用px,而国外的网站大都喜欢用em和rem,那么三者有什么区别,又各自有什么优劣呢? PX特点 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的 ...

  3. C - Elephant(贪心)

    Problem description An elephant decided to visit his friend. It turned out that the elephant's house ...

  4. QlikSense系列(4)——QlikSense管理

    QlikSense管理主要通过QMC界面,在安装成功后,首先需要导入用户,QlikSense本身不能创建和验证用户,只能借助第三方系统, 笔者只使用过Windows账户和AD域用户: 1.Window ...

  5. 利用js实现进入页面首先执行刷新操作,且只刷新一次

    让页面进行刷新,可以使用location.reload()方法,但是这种方法会让页面一直不断的刷新,这是因为当页面加载完成以后,我们让它刷新一次,那么浏览器就会重新向服务器请求数据, 界面会重新加载, ...

  6. 移植最新u-boot(裁剪和修改默认参数)

    [参考]韦东山 教学笔记 ================================================== 最简单的bootloader的编写步骤: 1. 初始化硬件:关看门狗.设 ...

  7. 【Oracle】修改参数的同时添加注释

    当修改参数时添加注释,我们会用到如下语句: alter system set parameter=value comment='description'; --修改参数需要有相应权限的用户去执行. 例 ...

  8. java学习笔记4——返回值

    这个简单,返回值就是计算结果. 打个比方:个表格中我只要结果,不要经过,这个返回值就是结果.这个过程就是函数. 另外还有一个函数套用一个函数,被套用的函数的结果作为一个返回值给套用的外层函使用.比如: ...

  9. JS 封装一个判断闰年平年的方法 aa(nian)

    nn(2017) function nn (nian){ if(nian%4 == 0 && nian%100 !== 0 || nian%400 ==0 ) { alert(&quo ...

  10. tomcat 配置 https 几点注意

    1.修改server.xml时候把注释的改改就好,不要添加,免得杂乱. 2.安装openssl openssl-devel autoconf libtool apr tomcat-native 才行. ...