从零单排入门机器学习:线性回归(linear regression)实践篇
线性回归(linear regression)实践篇
之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了。
这次打算以该课程的作业为主线,对机器学习基本知识做一下总结。小弟才学疏浅,如有错误。敬请指导。
问题原描写叙述:
you will implement linear regression with one
variable to predict prots for a food truck. Suppose you are the CEO of a
restaurant franchise and are considering dierent cities for opening a new
outlet. The chain already has trucks in various cities and you have data for
prots and populations from the cities.
简单来说,就是依据一个城市的人口数量,来预測一辆快餐车能获得的利益。
数据集大概是这样子的:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
一行数据为一个样本。第一列表示人口,第二列表示利益。
首先。先把数据可视化。
%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); figure; % open a new figure window plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
ylabel('Profit in $10,000s'); % Set the y label
xlabel('Population of City in 10,000s'); % Set the x label % ============================================================ end
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
计算cost function
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
H = X*theta;
diff = H - y;
%J = sum(diff.^2)/(2*m);
J = sum(diff.*diff)/(2*m); % ========================================================================= end
为了方便理解上面代码,看看各变量大概长什么样子的。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
梯度下降法计算參数theta
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% H = X*theta-y;
theta(1) = theta(1) - sum(H.* X(:,1))*alpha/m;%感觉这样写挺搓的
theta(2) = theta(2) - sum(H.* X(:,2))*alpha/m;
%theta = theta - alpha * (X' * (X * theta - y)) / m; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end
难以理解的是theta = theta - alpha * (X' * (X * theta - y)) / m; 这样的向量化算法。
先看看theta本质是怎么计算的
再看看各变量长什么样子的
算出theta之后,就能够画出拟合直线了。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
注:本文作者linger,如有转载。请标明转载于http://blog.csdn.net/lingerlanlan。
本文链接:http://blog.csdn.net/lingerlanlan/article/details/32162559
从零单排入门机器学习:线性回归(linear regression)实践篇的更多相关文章
- 从零单排入门机器学习:Octave/matlab的经常使用知识之矩阵和向量
Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
随机推荐
- [NOIP 2007] 树网的核
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1999 [算法] 树的直径 + 单调队列 [代码] #include<bits/ ...
- 18.29SSM基础整合开发
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/d ...
- Python3.6 import源文件与编译文件的关系
小结: 在Python3.6中 源文件存在时,import会比较源文件与__pycache__里相应文件的时间戳,来决定是否重新生成缓存编译文件 源文件不存在时,import会导入相应的.pyc文件 ...
- 测试数据准备中用到到csv写文件知识点
对于大数据测试中,有时需要自己去准备一些数据,用csvreader来写一个比较大的文件就比较方便,下面我就直接贴示例代码了: package com.acxm.amysu.test;import co ...
- cropper+pillow处理上传图片剪裁(二)
上次说到处理上传头像的方法是临时保存在本地,其实这样做并不妥,而且修改后的头像重新上传到model中也很麻烦,差了很多资料,解决了这个问题 大致思路:用户上传原图和修改数据—PIL修改后将图片保存为内 ...
- Android 使用WindowManager实现Android悬浮窗
WindowManager介绍 通过Context.getSystemService(Context.WINDOW_SERVICE)可以获得 WindowManager对象. 每一个WindowMan ...
- hdu1385 Minimum Transport Cost 字典序最小的最短路径 Floyd
求最短路的算法最有名的是Dijkstra.所以一般拿到题目第一反应就是使用Dijkstra算法.但是此题要求的好几对起点和终点的最短路径.所以用Floyd是最好的选择.因为其他三种最短路的算法都是单源 ...
- LruCache缓存机制
LruCache: Android提供的使用了(Least Recently Used)近期最少使用算法的缓存类 内部基于LinkedHashMap实现 实现这个主要需要重写 构造时需要确定Cache ...
- CV/PR:模式识别与图像处理笔试题
汉王高级研究人员(模式识别.图像处理类)招聘试题 原文链接:http://www.cnblogs.com/dongsheng/articles/2793142.html 说明: 可能您的专业并不完 ...
- vue项目中引用echarts的几种方式
准备工作: 首先我们初始化一个vue项目,执行vue init webpack echart,接着我们进入初始化的项目下.安装echarts, npm install echarts -S //或 ...