线性回归(linear regression)实践篇

之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了。

这次打算以该课程的作业为主线,对机器学习基本知识做一下总结。小弟才学疏浅,如有错误。敬请指导。

问题原描写叙述:

you will implement linear regression with one
variable to predict prots for a food truck. Suppose you are the CEO of a
restaurant franchise and are considering dierent cities for opening a new
outlet. The chain already has trucks in various cities and you have data for
prots and populations from the cities.

简单来说,就是依据一个城市的人口数量,来预測一辆快餐车能获得的利益。

数据集大概是这样子的:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

一行数据为一个样本。第一列表示人口,第二列表示利益。

首先。先把数据可视化。

%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...\n')
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples % Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y); fprintf('Program paused. Press enter to continue.\n');
pause;
function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); figure; % open a new figure window plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
ylabel('Profit in $10,000s'); % Set the y label
xlabel('Population of City in 10,000s'); % Set the x label % ============================================================ end

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

计算cost function

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
H = X*theta;
diff = H - y;
%J = sum(diff.^2)/(2*m);
J = sum(diff.*diff)/(2*m); % ========================================================================= end

为了方便理解上面代码,看看各变量大概长什么样子的。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

梯度下降法计算參数theta

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% H = X*theta-y;
theta(1) = theta(1) - sum(H.* X(:,1))*alpha/m;%感觉这样写挺搓的
theta(2) = theta(2) - sum(H.* X(:,2))*alpha/m;
%theta = theta - alpha * (X' * (X * theta - y)) / m; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end

难以理解的是theta = theta - alpha * (X' * (X * theta - y)) / m; 这样的向量化算法。

先看看theta本质是怎么计算的

再看看各变量长什么样子的

算出theta之后,就能够画出拟合直线了。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

注:本文作者linger,如有转载。请标明转载于http://blog.csdn.net/lingerlanlan。

本文链接:http://blog.csdn.net/lingerlanlan/article/details/32162559

从零单排入门机器学习:线性回归(linear regression)实践篇的更多相关文章

  1. 从零单排入门机器学习:Octave/matlab的经常使用知识之矩阵和向量

    Octave/matlab的经常使用知识之矩阵和向量 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错.算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一 ...

  2. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  4. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  5. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  6. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

随机推荐

  1. 6.11Realm简介

    CasRealm 统一认证授权中心  跟单点登录有关的.IniRealm 静态文件

  2. AtCoder Regular Contest 069

    1. C - Scc Puzzle 计算scc的个数,先判断s个数需要多少个cc,多的cc,每四个可以组成一个scc.注意数据范围,使用long long. #include<bits/stdc ...

  3. 带中横线的日期格式在iOS手机系统上 转换时间戳NaN问题

    类似于 '2019-04-01 14:13:00' 这样的日期格式转换时间戳在iOS手机上是无法转换的,需要先处理日期格式成 '2019/04/01 14:13:00' var str = '2019 ...

  4. CSS3实现简单的幻灯片

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. ios - masonry第三方库使用自动布局(参考:http://www.cocoachina.com/ios/20141219/10702.html)

    #import "ViewController.h" #import "Masonry.h" #define kWeakSelf(weakSelf) __wea ...

  6. 常用JQUERY插件大全

    jQuery内容滚动插件-BoxSlider jQuery artDialog对话框插件 移动端日期选择组件 图像延迟加载库Echo.js 轮播图FlexSlider插件 Slick.js幻灯片使用方 ...

  7. Android studio 隐藏toolbar上的app title

    getSupportActionBar().setDisplayShowTitleEnabled(false);

  8. 读书笔记7-浪潮之巅(part2)

    浪潮之巅 ——成功的公司各有各的绝招,而失败的公司倒有不少的共同之处 奔腾的芯(Intel) 前身:在处理器性能还很平庸的年代,站在科技前沿的计算机公司都是集中在工作站级处理器领域的,而同IBM.DE ...

  9. switch穿透中语句的执行顺序

    Day04_SHJavaTraing_4-6-2017 计算下列switch语句的运行结果 1. int x = 2,y=3; switch(x){ default: y++; case 3: y++ ...

  10. 《SLIC Superpixels》阅读笔记

    原始链接:http://blog.csdn.net/jkhere/article/details/16819285 或许有改动,请参考原文! SLIC 超像素(SLICSuperpixels) Rad ...