最近代码写的少了,而leetcode一直想做一个python,c/c++解题报告的专题,c/c++一直是我非常喜欢的,c语言编程练习的重要性体现在linux内核编程以及一些大公司算法上机的要求,python主要为了后序转型数据分析和机器学习,所以今天来做一个难度为hard 的简单正则表达式匹配。

做了很多leetcode题目,我们来总结一下套路:

首先一般是检查输入参数是否正确,然后是处理算法的特殊情况,之后就是实现逻辑,最后就是返回值。

当编程成为一种解决问题的习惯,我们就成为了一名纯粹的程序员


leetcode 10 Regular Expression Matching

(简单正则表达式匹配)

题目描述

Implement regular expression matching with support for ‘.’ and ‘*’.

‘.’ Matches any single character.

‘*’ Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

The function prototype should be:

bool isMatch(const char *s, const char *p)

Some examples:

isMatch(“aa”,”a”) → false

isMatch(“aa”,”aa”) → true

isMatch(“aaa”,”aa”) → false

isMatch(“aa”, “a*”) → true

isMatch(“aa”, “.*”) → true

isMatch(“ab”, “.*”) → true

isMatch(“aab”, “c*a*b”) → true


题目意义及背景

It might seem deceptively easy even you know the general idea, but programming it correctly with all the details require careful thought.

在程序设计中,规划所有的细节问题都需要认真思考。


题目分析以及需要注意的问题

为什么aab可以匹配模式c*a*b呢?

● It is a regular expression.Not a wild card.So the ” * ” does not mean any string.And the cab should be split like this “c * a * b” which means N “c”,N “a” and One “b”.

’ * ’ Matches zero or more of the preceding element, so ” c* ” could match nothing.

此题不能使用贪心法

考虑情况:

s = “ac”, p = “ab*c”

After the first ‘a’, we see that there is no b’s to skip for “b*”. We match the last ‘c’ on both side and conclude that they both match.

It seems that being greedy is good. But how about this case?

s = “abbc”, p = “ab*bbc”

When we see “b*” in p, we would have skip all b’s in s. They both should match, but we have no more b’s to match. Therefore, the greedy approach fails in the above case.

可能还有人说,如果碰到这种情况可以先看一下*后面的内容,但是碰见下面的情况就不好办了。

s = “abcbcd”, p = “a.*c.*d”

Here, “.*” in p means repeat ‘.’ 0 or more times. Since ‘.’ can match any character, it is not clear how many times ‘.’ should be repeated. Should the ‘c’ in p matches the first or second ‘c’ in s?

所以:

Unfortunately, there is no way to tell without using some kind of exhaustive search(穷举搜索).

Hints:

A sample diagram of a deterministic finite state automata (DFA). DFAs are useful for doing lexical analysis and pattern matching. An example is UNIX’s grep tool. Please note that this post does not attempt to descibe a solution using DFA.

什么是DFA?

Solution

主要解决方案是回溯法,使用递归或者dp

We need some kind of backtracking mechanism (回溯法)such that when a matching fails, we return to the last successful matching state and attempt to match more characters in s with ‘*’. This approach leads naturally to recursion.

The recursion mainly breaks down elegantly to the following two cases: 主要考虑两种递归情况

1. If the next character of p is NOT ‘*’, then it must match the current character of s. Continue pattern matching with the next character of both s and p.

2. If the next character of p is ‘*’, then we do a brute force exhaustive matching of 0, 1, or more repeats of current character of p… Until we could not match any more characters.

You would need to consider the base case carefully too. That would be left as an exercise to the reader.

Below is the extremely concise code (Excluding comments and asserts, it’s about 10 lines of code).

解题过程如下:

1、考虑特殊情况即*s字符串或者*p字符串结束。

(1)s字符串结束,要求*p也结束或者间隔‘’ (例如p=”a*b*c……”),否则无法匹配

(2)*s字符串未结束,而*p字符串结束,则无法匹配

2、*s字符串与*p字符串均未结束

(1)(p+1)字符不为’‘,则只需比较s字符与*p字符,若相等则递归到(s+1)字符串与*(p+1)字符串的比较,否则无法匹配。

(2)(p+1)字符为’‘,则p字符可以匹配*s字符串中从0开始任意多(记为i)等于*p的字符,然后递归到(s+i+1)字符串与*(p+2)字符串的比较,

只要匹配一种情况就算完全匹配。

bool isMatch(const char *s,const char *p)
{
//判断参数合法,以及程序正常结束
assert( s && p);
if(*p == '\0') return *s == '\0'; //next char is not '*'; must match current character
if(*(p+1) != '*')
{
assert(*p != '*');//考虑情况isMatch('aa','a*');
return ((*p == *s) ||(*p == '.' && *s != '\0')) && isMatch(s + 1, p + 1);
} //next char is '*' 继续递归匹配,不能写成*(p+1) == '*' 考虑情况isMatch('ab','.*c')
while((*p == *s)|| (*p == '.' && *s != '\0'))
{
if (isMatch(s, p+2)) return true;
s++;
} //匹配下一个模式
return isMatch(s,p+2);
}

此代码运行时间:18ms


Further Thoughts:

Some extra exercises to this problem:

1. If you think carefully, you can exploit some cases that the above code runs in exponential complexity. Could you think of some examples? How would you make the above code more efficient?

2. Try to implement partial matching instead of full matching. In addition, add ‘^’ and ‘$’ to the rule. ‘^’ matches the starting position within the string, while ‘$’ matches the ending position of the string.

3. Try to implement wildcard matching where ‘*’ means any sequence of zero or more characters.

For the interested reader, real world regular expression matching (such as the grep tool) are usually implemented by applying formal language theory. To understand more about it, you may read this article.

Rating: 4.8/5 (107 votes cast)

Regular Expression Matching, 4.8 out of 5 based on 107 ratings

leetcode的 解题报告提醒我们说

leetcode的解答报告中说的If you are stuck, recursion is your friend.

// 递归版,时间复杂度O(n),空间复杂度O(1)

class Solution {
public:
bool isMatch(const char *s, const char *p)
{
if (*p == '\0') return *s == '\0';
// next char is not '*', then must match current character
if (*(p + 1) != '*') {
if (*p == *s || (*p == '.' && *s != '\0'))
return isMatch(s + 1, p + 1);
else
return false; }
else
{ // next char is '*'
while (*p == *s || (*p == '.' && *s != '\0'))
{
if (isMatch(s, p + 2))
return true;
s++;
}
return isMatch(s, p + 2);
}
}
};

c++解决方案:

My concise recursive and DP solutions with full explanation in C++



Please refer to my blog post if you have any comment. Wildcard matching problem can be solved similarly.

class Solution {
public:
bool isMatch(string s, string p) {
if (p.empty()) return s.empty(); if ('*' == p[1])
// x* matches empty string or at least one character: x* -> xx*
// *s is to ensure s is non-empty
return (isMatch(s, p.substr(2)) || !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p));
else
return !s.empty() && (s[0] == p[0] || '.' == p[0]) && isMatch(s.substr(1), p.substr(1));
}
};
class Solution {
public:
bool isMatch(string s, string p) {
/**
* f[i][j]: if s[0..i-1] matches p[0..j-1]
* if p[j - 1] != '*'
* f[i][j] = f[i - 1][j - 1] && s[i - 1] == p[j - 1]
* if p[j - 1] == '*', denote p[j - 2] with x
* f[i][j] is true iff any of the following is true
* 1) "x*" repeats 0 time and matches empty: f[i][j - 2]
* 2) "x*" repeats >= 1 times and matches "x*x": s[i - 1] == x && f[i - 1][j]
* '.' matches any single character
*/
int m = s.size(), n = p.size();
vector<vector<bool>> f(m + 1, vector<bool>(n + 1, false)); f[0][0] = true;
for (int i = 1; i <= m; i++)
f[i][0] = false;
// p[0.., j - 3, j - 2, j - 1] matches empty iff p[j - 1] is '*' and p[0..j - 3] matches empty
for (int j = 1; j <= n; j++)
f[0][j] = j > 1 && '*' == p[j - 1] && f[0][j - 2]; for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (p[j - 1] != '*')
f[i][j] = f[i - 1][j - 1] && (s[i - 1] == p[j - 1] || '.' == p[j - 1]);
else
// p[0] cannot be '*' so no need to check "j > 1" here
f[i][j] = f[i][j - 2] || (s[i - 1] == p[j - 2] || '.' == p[j - 2]) && f[i - 1][j]; return f[m][n];
}
};

The shortest AC code.

1.’.’ is easy to handle. if p has a ‘.’, it can pass any single character in s except ‘\0’.

2.” is a totally different problem. if p has a ” character, it can pass any length of first-match characters in s including ‘\0’.

  class Solution {
public:
bool matchFirst(const char *s, const char *p){
return (*p == *s || (*p == '.' && *s != '\0'));
} bool isMatch(const char *s, const char *p) {
if (*p == '\0') return *s == '\0'; //empty if (*(p + 1) != '*') {//without *
if(!matchFirst(s,p)) return false;
return isMatch(s + 1, p + 1);
} else { //next: with a *
if(isMatch(s, p + 2)) return true; //try the length of 0
while ( matchFirst(s,p) ) //try all possible lengths
if (isMatch(++s, p + 2))return true;
}
}
};

a shorter one (14 lines of code) with neatly format:

class Solution {
public:
bool isMatch(const char *s, const char *p) {
for( char c = *p; c != 0; ++s, c = *p ) {
if( *(p+1) != '*' )
p++;
else if( isMatch( s, p+2 ) )
return true;
if( (*s==0) || ((c!='.') && (c!=*s)) )
return false;
}
return *s == 0;
}
};

9-lines 16ms C++ DP Solutions with Explanations

This problem has a typical solution using Dynamic Programming. We define the state P[i][j] to be true if s[0..i) matches p[0..j) and false otherwise. Then the state equations are:

a. P[i][j] = P[i - 1][j - 1], if p[j - 1] != ‘*’ && (s[i - 1] == p[j - 1] || p[j - 1] == ‘.’);

b. P[i][j] = P[i][j - 2], if p[j - 1] == ‘*’ and the pattern repeats for 0 times;

c. P[i][j] = P[i - 1][j] && (s[i - 1] == p[j - 2] || p[j - 2] == ‘.’), if p[j - 1] == ‘*’ and the pattern repeats for at least 1 times.

Putting these together, we will have the following code.

class Solution {
public:
bool isMatch(string s, string p) {
int m = s.length(), n = p.length();
vector<vector<bool> > dp(m + 1, vector<bool> (n + 1, false));
dp[0][0] = true;
for (int i = 0; i <= m; i++)
for (int j = 1; j <= n; j++)
if (p[j - 1] == '*')
dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
else dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
return dp[m][n];
}
};

2 years agoreply quote

python解决方案

使用re库,叼炸天!

import re

class Solution:
# @return a boolean
def isMatch(self, s, p):
return re.match('^' + p + '$', s) != None # debug
s = Solution()
print (s.isMatch("aaa", ".*"))

Python DP solution in 36 ms

def isMatch(self, s, p):
m = len(s)
n = len(p)
dp = [[True] + [False] * m]
for i in xrange(n):
dp.append([False]*(m+1)) for i in xrange(1, n + 1):
x = p[i-1]
if x == '*' and i > 1:
dp[i][0] = dp[i-2][0]
for j in xrange(1, m+1):
if x == '*':
dp[i][j] = dp[i-2][j] or dp[i-1][j] or (dp[i-1][j-1] and p[i-2] == s[j-1]) or (dp[i][j-1] and p[i-2]=='.')
elif x == '.' or x == s[j-1]:
dp[i][j] = dp[i-1][j-1] return dp[n][m]
about a year agoreply quote class Solution(object):
def isMatch(self, s, p, memo={("",""):True}):
if not p and s: return False
if not s and p: return set(p[1::2]) == {"*"} and not (len(p) % 2)
if (s,p) in memo: return memo[s,p] char, exp, prev = s[-1], p[-1], 0 if len(p) < 2 else p[-2]
memo[s,p] =\
(exp == '*' and ((prev in {char, '.'} and self.isMatch(s[:-1], p, memo)) or self.isMatch(s, p[:-2], memo)))\
or\
(exp in {char, '.'} and self.isMatch(s[:-1], p[:-1], memo))
return memo[s,p] # 445 / 445 test cases passed.
# Status: Accepted
# Runtime: 72 ms

8ms backtracking solution C++

//regular expression matching
//first solution: using recursive version
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.length(), n = p.length();
return backtracking(s, m, p, n);
} bool backtracking(string& s, int i, string& p, int j) {
if (i == 0 && j == 0) return true;
if (i != 0 && j == 0) return false;
if (i == 0 && j != 0) {
//in this case only p == "c*c*c*" this pattern can match null string
if (p[j-1] == '*') {
return backtracking(s, i, p, j-2);
}
return false;
}
//now both i and j are not null
if (s[i-1] == p[j-1] || p[j-1] == '.') {
return backtracking(s, i - 1, p, j - 1);
} else if (p[j-1] == '*') {
//two cases: determines on whether p[j-2] == s[i-1]
//first p[j-2]* matches zero characters of p
if (backtracking(s, i, p, j - 2)) return true;
//second consider whether p[j-2] == s[i-1], if true, then s[i-1] is matched, move to backtracking(i - 1, j)
if (p[j-2] == s[i-1] || p[j-2] == '.') {
return backtracking(s, i - 1, p, j);
}
return false;
}
return false;
}
};

c语言参考解决方案:

3ms C solution using O(mn) time and O(n) space

bool isMatch(char *s, char *p){
int i; int ls = strlen(s);
int lp = strlen(p);
bool* m = malloc((ls + 1) * sizeof(bool)); // init
m[0] = true;
for (i = 1; i <= ls; i++) {
m[i] = false;
} int ip;
for (ip = 0; ip < lp; ip++) {
if (ip + 1 < lp && p[ip + 1] == '*') {
// do nothing
}
else if (p[ip] == '*') {
char c = p[ip - 1];
for (i = 1; i <= ls; i++) {
m[i] = m[i] || (m[i - 1] && (s[i - 1] == c || c == '.'));
}
}
else {
char c = p[ip];
for (i = ls; i > 0; i--) {
m[i] = m[i - 1] && (s[i - 1] == c || c == '.');
}
m[0] = false;
}
} bool ret = m[ls];
free(m);
return ret;
}

简短的代码:

bool isMatch(char* s, char* p) {
while (*s) {
if (*p&&*(p+1)=='*') {
if (!(*p==*s||*p=='.')) {p+=2;continue;}
if (!isMatch(s,p+2)) {s++;continue;} else return true;
}
if (*p==*s||*p=='.') {s++;p++;continue;}
return false;
}
while(*p&&*(p+1)=='*') p+=2;
return !*p; }

参考文献

http://articles.leetcode.com/regular-expression-matching

http://blog.csdn.net/gatieme/article/details/51049244

http://www.jianshu.com/p/85f3e5a9fcda

leetcode 10 Regular Expression Matching(简单正则表达式匹配)的更多相关文章

  1. 10. Regular Expression Matching[H]正则表达式匹配

    题目 Given an input string(s) and a pattern(p), implement regular expression matching with support for ...

  2. Leetcode 10. Regular Expression Matching(递归,dp)

    10. Regular Expression Matching Hard Given an input string (s) and a pattern (p), implement regular ...

  3. leetcode 10. Regular Expression Matching 、44. Wildcard Matching

    10. Regular Expression Matching https://www.cnblogs.com/grandyang/p/4461713.html class Solution { pu ...

  4. [LeetCode] 10. Regular Expression Matching 正则表达式匹配

    Given an input string (s) and a pattern (p), implement regular expression matching with support for  ...

  5. [LeetCode]10. Regular Expression Matching正则表达式匹配

    Given an input string (s) and a pattern (p), implement regular expression matching with support for ...

  6. [leetcode]10. Regular Expression Matching正则表达式的匹配

    Given an input string (s) and a pattern (p), implement regular expression matching with support for  ...

  7. LeetCode OJ:Regular Expression Matching(正则表达式匹配)

    Implement regular expression matching with support for '.' and '*'. '.' Matches any single character ...

  8. LeetCode (10): Regular Expression Matching [HARD]

    https://leetcode.com/problems/regular-expression-matching/ [描述] Implement regular expression matchin ...

  9. 蜗牛慢慢爬 LeetCode 10. Regular Expression Matching [Difficulty: Hard]

    题目 Implement regular expression matching with support for '.' and '*'. '.' Matches any single charac ...

随机推荐

  1. vue-lazyload插件

    更详细的内容,请移步 使用 npm install vue-lazyload --save //注册插件 import vueLazyload from 'vue-lazyload' Vue.use( ...

  2. 记录python之递归函数

    函数move(n,a,b,c)的定义是将n个圆盘从a借助b移动到c. def move(n,a,b,c): if n==1: print a,'-->',c move (n-1,a,c,b) p ...

  3. 紫书 例题11-4 UVa247 (Floyd判断联通)

    Floyd联通, 然后为了输出联通分量而新建一个图, 让互相可以打电话的建立一条边, 然后dfs输出联通分量就ok了. #include<cstdio> #include<iostr ...

  4. C++模板遇到iterator时候遇到的问题和解决方法

    今天开发的时候,发现用模板的时候,再加上iterator,会报错,如下: std::map<T, S>::iterator find_iter = mp.find(key); 编译会报错: ...

  5. SQL的四种语言:DDL、DML、DCL、TCL

    1. DDL(Data Definition Language) 数据库定义语言statements are used to define the database structure or sche ...

  6. 图像切割—基于图的图像切割(Graph-Based Image Segmentation)

     图像切割-基于图的图像切割(Graph-Based Image Segmentation) Reference: Efficient Graph-Based Image Segmentation ...

  7. oracle 存储过程定义及调试,并终于被C# 调用 代码

    C# 调用存储过程 參考了非常多文章,写了例如以下文字,算是分享吧 目的:更改积分,并作一定校验 一.一般的调试方法: 方法一:带返回out參数,必须定义变量 myresult DECLARE myr ...

  8. mysql---左连接、右连接、内连接之间的差别与联系

    现有两张表 第一张表为男生表,记录了男生的姓名和配偶的编号 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXlfbWFv/font/5a6L5L2T/fo ...

  9. 在shell脚本中使用代理

    设置所有的代理走socks5 export ALL_PROXY="socks5://127.0.0.1:1080" 取消代理 unset ALL_PROXY  

  10. Hadoop框架基础(五)

    ** Hadoop框架基础(五) 已经部署了Hadoop的完全分布式集群,我们知道NameNode节点的正常运行对于整个HDFS系统来说非常重要,如果NameNode宕掉了,那么整个HDFS就要整段垮 ...