我所理解的monad(1):半群(semigroup)与幺半群(monoid)
google到数学里定义的群(group): G为非空集合,如果在G上定义的二元运算 *,满足
(1)封闭性(Closure):对于任意a,b∈G,有a*b∈G
(2)结合律(Associativity):对于任意a,b,c∈G,有(a*b)*c=a*(b*c)
(3)幺元 (Identity):存在幺元e,使得对于任意a∈G,e*a=a*e=a
(4)逆元:对于任意a∈G,存在逆元a^-1,使得a^-1*a=a*a^-1=e
则称(G,*)是群,简称G是群。
如果仅满足封闭性和结合律,则称G是一个半群(Semigroup);如果仅满足封闭性、结合律并且有幺元,则称G是一个含幺半群(Monoid)。
相比公式还是用代码表达更容易理解,下面表示一个半群(semigroup):
trait SemiGroup[T] {
def append(a: T, b: T): T
}
特质SemiGroup,定义了一个二元操作的方法append,可以对半群内的任意2个元素结合,且返回值仍属于该半群。
我们看具体的实现,一个Int类型的半群实例:
object IntSemiGroup extends SemiGroup[Int] {
def append(a: Int, b: Int) = a + b
}
// 对2个元素结合
val r = IntSemiGroup.append(1, 2)
现在在半群的基础上,再增加一个幺元(Identity,也翻译为单位元),吐槽一下,幺元这个中文不知道最早谁起的,Identity能表达的意义(同一、恒等)翻译到中文后完全消失了。
trait Monoid[T] extends SemiGroup[T] {
// 定义单位元
def zero: T
}
上面定义了一个幺半群,继承自半群,增加了一个单位元方法,为了容易理解,我们用zero表示,半群里的任何元素a与zero结合,结果仍是a本身。
构造一个Int类型的幺半群实例:
object IntMonoid extends Monoid[Int] {
// 二元操作
def append(a: Int, b: Int) = a + b
// 单位元
def zero = 0
}
构造一个String类型的幺半群实例:
object StringMonoid extends Monoid[String] {
def append(a: String, b: String) = a + b
def zero = ""
}
再构造一个复杂点的 List[T] 的幺半群工厂方法:
def listMonoid[T] = {
new Monoid[List[T]] {
def zero = Nil
def append(a: List[T], b: List[T]) = a ++ b
}
}
OK,现在我们已经了解了幺半群是什么样了,但它有什么用?
http://hongjiang.info/semigroup-and-monoid/
我所理解的monad(1):半群(semigroup)与幺半群(monoid)的更多相关文章
- 我所理解的monad(4):函子(functor)是什么--可把范畴简单的看成高阶类型
大致介绍了幺半群(monoid)后,我们重新回顾最初引用wadler(haskell委员会成员,把monad引入haskell的家伙)的那句话: 现在我们来解读这句话中包含的另一个概念:自函子(End ...
- Scalaz(25)- Monad: Monad Transformer-叠加Monad效果
中间插播了几篇scalaz数据类型,现在又要回到Monad专题.因为FP的特征就是Monad式编程(Monadic programming),所以必须充分理解认识Monad.熟练掌握Monad运用.曾 ...
- js函数式编程术语总结 - 持续更新
参考文档1 参考文档2 函数式编程术语 高阶函数 Higher-Order Functions 以函数为参数的函数 返回一个函数的函数 函数的元 Arity 比如,一个带有两个参数的函数被称为二元函数 ...
- monads-are-elephants(转)
介绍monads有点像互联网时代的家庭手工业.我想 “为什么要反对传统?”,但这篇文章将以Scala对待monads的方式来描述. 有个古老的寓言,讲述了几个瞎子第一次摸到大象.一个抱着大象的腿说:“ ...
- C# Monads的实现(二)
再谈continuation monad 上一篇中我们已经介绍了continuation monad,但是这个monad与Identity,Maybe,IEnumerable monads稍微难于理解 ...
- Haskell语言学习笔记(25)MonadState, State, StateT
MonadState 类型类 class Monad m => MonadState s m | m -> s where get :: m s get = state (\s -> ...
- Scalaz(50)- scalaz-stream: 安全的无穷运算-running infinite stream freely
scalaz-stream支持无穷数据流(infinite stream),这本身是它强大的功能之一,试想有多少系统需要通过无穷运算才能得以实现.这是因为外界的输入是不可预料的,对于系统本身就是无穷的 ...
- Scalaz(46)- scalaz-stream 基础介绍
scalaz-stream是一个泛函数据流配件库(functional stream combinator library),特别适用于函数式编程.scalar-stream是由一个以上各种状态的Pr ...
- Category Theory: 01 One Structured Family of Structures
Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...
随机推荐
- [TJOI2017] DNA 解题报告 (hash+二分)
题目链接:https://www.luogu.org/problemnew/show/P3763 题目大意: 给定原串S0,询问S0有多少个子串和给定串S相差不到3个字母 题解: 我们枚举S0的子串, ...
- C# 实现ADSL自动断网和拨号(适用于拨号用户)
using System;using System.Runtime.InteropServices; public struct RASCONN{ public int dwSize; p ...
- Creating a New Master Page in SharePoint 2013
Creating a New Master Page in SharePoint 2013 This article explains how to create a Master Page in S ...
- (转载)10个实用的但偏执的Java编程技术
10个实用的但偏执的Java编程技术 在沉浸于编码一段时间以后(比如说我已经投入近20年左右的时间在程序上了),你会渐渐对这些东西习以为常.因为,你知道的…… 作者:小峰来源:码农网|2015-09- ...
- 【转载】Reactor模式和NIO
当前分布式计算 Web Services盛行天下,这些网络服务的底层都离不开对socket的操作.他们都有一个共同的结构:1. Read request2. Decode request3. Proc ...
- 【参考】.class文件的JDK编译版本查看
使用 UltraEdit 打开 .class 文件,第一行内容: 00000000h: CA FE BA BE 00 00 00 32 00 A9 07 00 02 01 00 37 ; 漱壕... ...
- 3ds Max绘制一个漂亮的青花瓷碗3D模型
这篇教程向小伙伴门介绍使用3ds Max绘制一个漂亮的青花瓷碗3D模型方法,教程很不错,很适合大家学习,推荐过来,一起来学习吧! 车削,材质贴图的应用,添加位图,渲染视图 步骤如下: 在桌面找到3DM ...
- n阶方阵,数字从1~n^2,顺时针增大
运行结果如下图: 解题思路:可以将这个问题分解成x个外围正方形所围成的图形,外围的正方形又可以分为4个步骤,向右依次增大.向下依次增大.向左依次增大.向上依次增大.基本思路就是如此,最关键的就是什么时 ...
- Calling Mojo from Blink
Variants Let's assume we have a mojom file such as this: module example.mojom; interface Foo { ...
- Converting Legacy Chrome IPC To Mojo
Converting Legacy Chrome IPC To Mojo Looking for Mojo Documentation? Contents Overview Deciding What ...