hdu 4859 最大点权独立集的变形(方格取数的变形)
/*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps;
和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf。然后和方格取数差不多的建图
.--.||E权值为2,,.||E--D权值为0.
最大点权独立集=sum-最小点权覆盖。
*/
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3fffffff
#define ii 50
#define N 3000
struct node {
int u,v,w,next;
}bian[N*6];
int head[N],yong,s,t,dis[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
memset(dis,-1,sizeof(dis));
}
void addedge(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addedge(u,v,w);
addedge(v,u,0);
}
void bfs() {
int u,v,i;
queue<int>q;
q.push(t);
dis[t]=0;
while(!q.empty()) {
u=q.front();
q.pop();
for(i=head[u];i!=-1;i=bian[i].next) {
v=bian[i].v;
if(dis[v]==-1) {
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return ;
}
int ISAP() {
int sum=0;
bfs();
int gap[N],cur[N],stac[N],top,i;
memset(gap,0,sizeof(gap));
for(i=s;i<=t;i++) {
gap[dis[i]]++;
cur[i]=head[i];
}
int k=s;
top=0;
while(dis[s]<t+1) {
if(k==t) {
int minn=inf,index;
for(i=0;i<top;i++) {
int e=stac[i];
if(minn>bian[e].w) {
minn=bian[e].w;
index=i;
}
}
for(i=0;i<top;i++) {
int e=stac[i];
bian[e].w-=minn;
bian[e^1].w+=minn;
}
sum+=minn;
top=index;
k=bian[stac[top]].u;
}
for(i=cur[k];i!=-1;i=bian[i].next) {
int v=bian[i].v;
if(bian[i].w&&dis[k]==dis[v]+1) {
cur[k]=i;
k=v;
stac[top++]=i;
break;
}
}
if(i==-1) {
int m=t+1;
for(i=head[k];i!=-1;i=bian[i].next)
if(m>dis[bian[i].v]&&bian[i].w) {
m=dis[bian[i].v];
cur[k]=i;
}
if(--gap[dis[k]]==0)break;
gap[dis[k]=m+1]++;
if(k!=s)
k=bian[stac[--top]].u;
}
}
return sum;
}
int main() {
int n,m,i,j,T,id[ii][ii],cnt,sum,f=0;
char ss[ii][ii];
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
cnt=1;sum=0;
init();
for(i=1;i<=n;i++) {
scanf("%s",ss[i]+1);
for(j=1;j<=m;j++) {
if(ss[i][j]=='.'||ss[i][j]=='E')//记录总数
sum+=4;
id[i][j]=cnt++;
}
}
s=0;t=n*m+1;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++) {
if((i+j)&1) {//奇偶建图与源点相连
if(ss[i][j]=='.')
add(s,id[i][j],inf);//必然不割
if(ss[i][j]=='D')//必割
add(s,id[i][j],0);
if(ss[i][j]=='E')//任意选择
add(s,id[i][j],4);
if(i>=2) {
if(ss[i][j]=='.'||ss[i][j]=='E') {
if(ss[i-1][j]=='.'||ss[i-1][j]=='E')add(id[i][j],id[i-1][j],2);//
if(ss[i-1][j]=='D')add(id[i][j],id[i-1][j],0);//
}
else
add(id[i][j],id[i-1][j],0);
}
if(j>=2) {
if(ss[i][j]=='.'||ss[i][j]=='E') {
if(ss[i][j-1]=='.'||ss[i][j-1]=='E')add(id[i][j],id[i][j-1],2);
if(ss[i][j-1]=='D')add(id[i][j],id[i][j-1],0);
}
else
add(id[i][j],id[i][j-1],0);
}
if(i<=n-1){
if(ss[i][j]=='.'||ss[i][j]=='E') {
if(ss[i+1][j]=='.'||ss[i+1][j]=='E')add(id[i][j],id[i+1][j],2);
if(ss[i+1][j]=='D')add(id[i][j],id[i+1][j],0);
}
else
add(id[i][j],id[i+1][j],0);
}
if(j<=m-1) {
if(ss[i][j]=='.'||ss[i][j]=='E') {
if(ss[i][j+1]=='.'||ss[i][j+1]=='E')add(id[i][j],id[i][j+1],2);
if(ss[i][j+1]=='D')add(id[i][j],id[i][j+1],0);
}
else
add(id[i][j],id[i][j+1],0);
}
}
else {//与汇点相连
if(ss[i][j]=='.')
add(id[i][j],t,inf);
if(ss[i][j]=='E')
add(id[i][j],t,4);
if(ss[i][j]=='D')
add(id[i][j],t,0);
}
}
printf("Case %d: ",++f);
printf("%d\n",sum-ISAP());
}
return 0;
}
hdu 4859 最大点权独立集的变形(方格取数的变形)的更多相关文章
- hdu 3657 最大点权独立集变形(方格取数的变形最小割,对于最小割建图很好的题)
转载:http://blog.csdn.net/cold__v__moon/article/details/7924269 /* 这道题和方格取数2相似,是在方格取数2的基础上的变形. 方格取数2解法 ...
- HDU 1565 最大点权独立集
首先要明白图论的几个定义: 点覆盖.最小点覆盖: 点覆盖集即一个点集,使得所有边至少有一个端点在集合里.或者说是“点” 覆盖了所有“边”.. 最小点覆盖(minimum vertex covering ...
- hdu 1565&&hdu 1569 (最大点权独立集)
题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...
- hdu 3657最大点权独立集变形(方格取数变形)
/* 分奇偶为二部图,s与奇建图,t与偶建图,权值为当前数的值,如果遇到必取的权值置为inf. 奇偶建边为相邻的权值为2*(x&y):所有数的值-最小点全覆盖. 置为inf意为不能割掉.奇偶边 ...
- [学习笔记]最小割之最小点权覆盖&&最大点权独立集
最小点权覆盖 给出一个二分图,每个点有一个非负点权 要求选出一些点构成一个覆盖,问点权最小是多少 建模: S到左部点,容量为点权 右部点到T,容量为点权 左部点到右部点的边,容量inf 求最小割即可. ...
- HDU 1565 方格取数(1) 轮廓线dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...
- HDU-1565 方格取数(1)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Me ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
随机推荐
- 新版chrome调整开发者工具位置方式改变
转自:https://blog.csdn.net/gsls200808/article/details/70244150 本文所指新版56.0.2924.87 (64-bit) 原来F12可以看到窗口 ...
- Django - 自定义请求头
收藏一下以后学习 博客搬运地址 Django接收自定义http header(转)
- [Swift通天遁地]九、拔剑吧-(17)创建一个三维折叠样式的页面展开效果
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- akka设计模式系列-Chain模式
链式调用在很多框架和系统中经常存在,算不得上是我自己总结的设计模式,此处只是简单介绍在Akka中的两种实现方式.我在这边博客中简化了链式调用的场景,简化后也更符合Akka的设计哲学. trait Ch ...
- Java 中数组的遍历方式
数组对于每一门编程语言来说都是重要的数据结构之一,当然不同语言对数组的实现及处理也不尽相同. Java 语言中提供的数组是用来存储固定大小的同类型元素. 今天我们就来说一下在java中遍历数组都有哪几 ...
- 最少拦截系统------LCS--------动态规划
这是一道极好的题,会了这个应该说 最长递增子序列什么的 就有了另外一种思路了 下面附上代码---应该仔细的看一下 那个 if判断 #include<stdio.h> #include ...
- SVN系列学习(三)-TortoiseSVN的基本操作
1.添加(Add) 在ZJHZXS_01中,新建一个记事本,在记事本中写上一下内容,然后保存,再打开,再保存 这个时候,在选中文件夹ZJHZXS_01,并右击[SVN Commit] 提交成功,加了一 ...
- 跨平台键鼠共享软件synergy使用
如果共享的机子都是win系统的话,也可以使用 无界鼠标. 这里主要讲跨平台通用的synergy.下载地址:http://synergy-project.org/ 注意1:最好下载同一位数,同一版本的. ...
- 慕课网中网页定位导航中js相关问题总结
<!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...
- 我的liunx开发环境的配置之路
相信有不少人和我一样,虽然是做纯linux开发,但并不排斥windows,并且喜欢在windows下面的使用各种好用的工具来让linux的编程工作变得更加方便.实际上每一个系统都有他的过人支持,win ...