poj--3169--Layout(简单差分约束)
Layout
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints. Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart. Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input 4 2 1 Sample Output 27 Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27. Source |
[Submit] [Go Back] [Status]
[Discuss]
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;
#define MAXN 1010
#define MAXM 1000000+10
#define INF 10000000+10
int head[MAXN],dist[MAXN],used[MAXN],vis[MAXN];
int n,x,y,cnt;
struct node
{
int u,v,val;
int next;
}edge[MAXM];
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void add(int u,int v,int val)
{
node E={u,v,val,head[u]};
edge[cnt]=E;
head[u]=cnt++;
}
void getmap()
{
for(int i=1;i<n;i++)
add(i+1,i,0);
int a,b,c;
while(x--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(y--)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void SPFA()
{
queue<int> Q;
for(int i = 1; i <= n; i++)
{
dist[i] = i==1 ? 0 : INF;
vis[i] = false;
used[i] = 0;
}
// memset(vis,0,sizeof(vis));
// memset(dist,INF,sizeof(dist));
// memset(used,0,sizeof(used));
// dist[1]=0;
used[1] = 1;
vis[1] = 1;
Q.push(1);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for(int i = head[u]; i != -1; i = edge[i].next)
{
node E = edge[i];
if(dist[E.v] > dist[u] + E.val)
{
dist[E.v] = dist[u] + E.val;
if(!vis[E.v])
{
vis[E.v] = 1;
used[E.v]++;
if(used[E.v] > n)
{
printf("-1\n");
return ;
}
Q.push(E.v);
}
}
}
}
if(dist[n] == INF)
printf("-2\n");
else
printf("%d\n", dist[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&x,&y)!=EOF)
{
init();
getmap();
SPFA();
}
return 0;
}
poj--3169--Layout(简单差分约束)的更多相关文章
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- poj 3169 Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
- POJ 3167 Layout(差分约束)
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...
随机推荐
- Python3没有dict.has_key方法
最近开始学习Python,安装上最新的Python3.3.3照书敲了一个小程序结果报错 'dict' object has no attribute 'has_key' 上网查也找不到解决办法,后来发 ...
- 查看 myeclipse激活状态
查看激活状态 myeclipse-->subscription information
- RAP、Mock.js、Vue.js、Webpack
最近做项目使用的是RAP1的接口,但是昨天开始,RAP1 出现了问题,接口都不能用了. 所以补充一下Mock.js的用法,以便在这种突发的情况时候时自己通过Mock的方式来处理接口. npm init ...
- 关于React-native的介绍以及环境搭建
React-Native介绍(后面内容的RN就是指react-native) 由facebook公司推出的,基于react,能开发原生app 原理: 1. 利用react框架写好js代码 2. 利用p ...
- 第九课: - 导出到CSV / EXCEL / TXT
第 9 课 将数据从microdost sql数据库导出到cvs,excel和txt文件. In [1]: # Import libraries import pandas as pd import ...
- JavaScript数组和json的区别
<html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...
- springdatajpa使用informix数据库出现no such column 异常的问题
本博客属原创,转载请注明出处 问题描述: 环境: spring data jpa版本4.0.3 informix驱动版本3.50.JC9 程序结构 jpa配置文件对应的jdbc配置 dao层继承jpa ...
- Vtk读取并显示保存图像
(1):Vtk读取并显示图像:三种方法 转载:未知出处 转载:用VTK显示平面图片:http://blog.csdn.net/tonylk/article/details/464881 用到vtkJP ...
- Auto Layout压缩阻力及内容吸附讲解
Auto Layout压缩阻力及内容吸附讲解 本文为投稿文章,作者:梁炜V 在Auto Layout的使用中,有两个很重要的布局概念:Content Compression Resistance 和 ...
- 传入class、id name 的函数封装
function chooseDate(idName){ 2 $('#' + idName).click(function(){ //执行函数 4 }); 5 }; 6 //传入的 dataOne 就 ...