BZOJ4518: [Sdoi2016]征途(dp+斜率优化)
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 1875 Solved: 1045
[Submit][Status][Discuss]
Description
Input
Output
一个数,最小方差乘以 m^2 后的值
Sample Input
1 2 5 8 6
Sample Output
HINT
1≤n≤3000,保证从 S 到 T 的总路程不超过 30000
Source
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<bitset>
#include<cmath>
#include<algorithm>
#define int long long
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1e5+;
const int limit=;
int N,M;
int f[MAXN],g[MAXN];
int sum[MAXN];
int sqr(int x) {return x*x;}
int Query(int l,int r){return sum[r]-sum[l-];}
int X(int x){return sum[x];}
int Y(int x){return g[x]+sqr(sum[x]);}
int slope(int x,int y){return (Y(y)-Y(x)) / (X(y)-X(x));}
int Q[MAXN];
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
//freopen("b.out","w",stdout);
#endif
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++) scanf("%d",&sum[i]),sum[i]+=sum[i-];
for(int i=;i<=N;i++) g[i]=sqr(sum[i]);
for(int k=;k<=M-;k++)
{
memset(f,0x3f,sizeof(f));
int h=,t=;Q[]=k-;
for(int i=k+;i<=N;i++)
{
while(h<t&&slope(Q[h],Q[h+])<*sum[i]) h++;
int j=Q[h];
f[i]=min(f[i],g[j]+sqr(Query(j+,i)));
while(h<t&&slope(Q[t-],Q[t])>slope(Q[t-],i)) t--;
Q[++t]=i;
} memcpy(g,f,sizeof(f));
}
printf("%lld",-sum[N]*sum[N]+f[N]*M);
return ;
}
BZOJ4518: [Sdoi2016]征途(dp+斜率优化)的更多相关文章
- BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *
BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 2018.09.08 bzoj4518: [Sdoi2016]征途(斜率优化dp)
传送门 把式子展开后发现就是要求: m∗(∑i=1msum′[i])−sum[n]2" role="presentation" style="position: ...
- BZOJ.4072.[SDOI2016]征途(DP 斜率优化)
题目链接 题目要求使得下面这个式子最小(\(\mu=\frac{\sum_{i=1}^ma_i}{m}\)是平均数,\(a_i\)为第\(i\)段的和): \[\frac{\sum_{i-1}^m(\ ...
- BZOJ_4518_[Sdoi2016]征途_斜率优化
BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- bzoj4518/luogu4072 征途(斜率优化dp)
首先推一波公式: 设f[t][i]为第t天以i为结尾,这时已经算了的最小公差$*m^2$ 设s[i]为1到i的和 $$f[t][i]=min\{f[t-1][j]+m*(s[i]-s[j]-\frac ...
- 【洛谷 P4072】 [SDOI2016]征途(斜率优化)
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
随机推荐
- (转)基于MVC4+EasyUI的Web开发框架经验总结(9)--在Datagrid里面实现外键字段的转义操作
http://www.cnblogs.com/wuhuacong/p/3872890.html 我们在使用EasyUI的时候,很多情况下需要使用到表格控件datagrid,这个控件控件非常强大,使用起 ...
- Type inference
Type inference refers to the automatic detection of the data type of an expression in a programming ...
- Eclipse(含STS)安装插件/软件、更新
安装方式 Eclipse安装插件的三种方式 直接复制安装 离线下载好插件,通常去这个插件的官网去找,就是在线安装的地址?如testng可以去http://beust.com/eclipse即http: ...
- 多重循环、缓冲区管理、数组(day06)
无法预知的数字叫随机数 rand标准函数可以用来获得随机数 为了使用这个标准函数需要包含stdlib.h头文件 srand标准函数用来设置随机数种子 这个函数把一个整数作为种子使用 不同的种子产生的随 ...
- FusionCharts,双折线图和双柱状图
一个电商项目中,用到了"双柱状图",对比 当前库存和累计库存. 网上找了好几个贴子,才找到具体用法. 代码整理下,以备不时之需. 效果图-双折线图 效果图-双柱状图 <%@ ...
- 使用SQLAlchemy对博客文章进行分页
https://blog.csdn.net/hyman_c/article/details/54382161
- 通过请求接口的办法获得本设备IP以及IP地址
获取本设备IP接口(搜狐) http://pv.sohu.com/cityjson?ie=utf-8 result Content: { "cip": "58.21 ...
- csu1395模拟
#include<stdio.h> #include<string.h> #define N 10 char s[N][N][N]={{"***",&qu ...
- 转载 - 算法实践——舞蹈链(Dancing Links)算法求解数独
出处:http://www.cnblogs.com/grenet/p/3163550.html 在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dan ...
- 0316 【案例】MySQL count操作优化案例一则
转自http://blog.itpub.net/22664653/viewspace-1791124/ 一 背景 某业务的数据库定期报 thread_runing 飙高,通定位发现一个慢查询sql ...