求 \begin{equation*}\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\end{equation*} 的值.

莫比乌斯反演吧.

\begin{align*}
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|i}\sum_{d|j}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}\mu(d)\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}1\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac{\left\lfloor\frac n k\right\rfloor}d\right\rfloor\left\lfloor\frac{\left\lfloor\frac m k\right\rfloor}d\right\rfloor\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac n{kd}\right\rfloor\left\lfloor\frac m{kd}\right\rfloor\\
\end{align*}

tesuto-Mobius的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  3. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  4. Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)

    mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...

  5. (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)

    莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...

  6. 数学图形之莫比乌斯带(mobius)

    莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实 ...

  7. Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...

  8. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  9. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  10. bzoj 2820 mobius反演

    学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i    这时A的素数分解式中,p这一项的次数>=2. ...

随机推荐

  1. Application Framework层介绍

    http://write.blog.csdn.net/postedithttp://write.blog.csdn.net/postedithttp://write.blog.csdn.net/pos ...

  2. Kafka编程实例

    编程 Producer是一个应用程序.它创建消息并发送它们到Kafka broker中.这些producer在本质上是不同.比方.前端应用程序.后端服务.代理服务.适配器对于潜在的系统,Hadoop对 ...

  3. WPF学习笔记——在“System.Windows.StaticResourceExtension”上提供值时引发了异常

    在"System.Windows.StaticResourceExtension"上提供值时引发了异常 因应需要,写了一个转换器,然后窗体上引用,结果就出来这个错.编译的时候没事, ...

  4. Android Calendar的运用

    import java.text.DateFormat; import java.text.ParsePosition; import java.text.SimpleDateFormat; impo ...

  5. P1121 环状最大两段子段和

    P1121 环状最大两段子段和 题目描述 给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. 输入输出格式 输入格式: 输入文件maxsum2.in的 ...

  6. Winform设计-小百货 涵盖基础插件学习(适合新手)

    Winform设计-小百货 涵盖基础插件学习(适合新手)   第一次写winform,主要是为了加快对  事件的 理解. 代码如下: private void Form1_Load(object se ...

  7. sql将一个表中的数据插入到另一个表中

    sql将一个表中的数据插入到另一个表中 列名不一定要相同,只要你在HH中列出要插入列的列表跟select   from   mm表中的选择的列的列表一一对应就可以了,当然两边的数据类型应该是兼容的.  ...

  8. (Go)06. Printf格式化输出、Scanf格式化输入详解

    Print.Println .Printf .Sprintf .Fprintf都是fmt 包中的公共方法,在需要打印信息时需要用到这些函数,那么这些函数有什么区别呢? Print: 输出到控制台(不接 ...

  9. Largest Rectangle in a Histogram(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=1506 题意:给出n个矩形的高度,每个矩形的宽都为1,求相邻的矩形能组合成的最大的矩形的面积. 思路:求出比第i个 ...

  10. 0423-mysql插入语句大全

    /*注意: 1.字段和值要一一对应 2.值的数据类型是字段的数据类型 3.当输入的字段是表中全部字段时,字段可以省略不写: insert into login values ('zhangsan',‘ ...