求 \begin{equation*}\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\end{equation*} 的值.

莫比乌斯反演吧.

\begin{align*}
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|i}\sum_{d|j}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}\mu(d)\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}1\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac{\left\lfloor\frac n k\right\rfloor}d\right\rfloor\left\lfloor\frac{\left\lfloor\frac m k\right\rfloor}d\right\rfloor\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac n{kd}\right\rfloor\left\lfloor\frac m{kd}\right\rfloor\\
\end{align*}

tesuto-Mobius的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  3. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  4. Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)

    mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...

  5. (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)

    莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...

  6. 数学图形之莫比乌斯带(mobius)

    莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实 ...

  7. Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...

  8. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  9. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  10. bzoj 2820 mobius反演

    学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i    这时A的素数分解式中,p这一项的次数>=2. ...

随机推荐

  1. [PWA] Check Online Status by using the NavigatorOnLine API

    Even if you have your application fully cached, you couldn’t perform any external request without in ...

  2. windows下solr7.9+tomcat7环境搭建

    1.下载solr.tomcat(能够不用下载.由于solr有jetty支持) 2.solr部署到tomcat上    首先,把解压包下的solr-4.9.0\example\solr-webapp中的 ...

  3. 2017全面JAVA面试经历总结

    https://wenku.baidu.com/view/05e8f71afbd6195f312b3169a45177232f60e474.html?from=search JAVA常见面试题及解答2 ...

  4. 【Ubuntu】小技巧

    1.在 usr/share/applications/ 中可以找到 .desktop 文件,修改其内容可以修改你的桌面快捷方式, 例如图标或者分类还可以新建你的 .desktop ,如果你安装的软件没 ...

  5. Qt为啥从4.8直接就跳到5.3了呢?这不科学吧

    http://qt-project.org/downloads Qt 5.3 Select the file according to your operating system from the l ...

  6. SQL Source Control for teams

    You'll use SQL Source Control differently depending on which development model you're using: 不同的模式有不 ...

  7. PCB MS SQL 将字符串分割为表变量(表值函数)

    Create FUNCTION [dbo].[SplitTable]( @s varchar(max), --待分拆的字符串 ) --数据分隔符 ),), col varchar(max)) --建立 ...

  8. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  9. 一个对象toString()方法如果没有被重写,那么默认调用它的父类Object的toString()方法,而Object的toString()方法是打印该对象的hashCode,一般hashCode就是此对象的内存地址

    昨天因为要从JFrame控件获取密码,注意到一个问题,那就是用toString方法得到的不一定是你想要的,如下: jPasswordField是JFrame中的密码输入框,如果用下面的方法是得不到密码 ...

  10. Spark Streaming概述

    Spark Streaming是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力. 其中包括:资源管理框架,Apache YARN.Apache Mesos:基于内存的 ...