传送门

Description

给你一张 n 个点 m 条边的DAG,1 号节点没有入边。再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 。

Input

输入文件的第一行包含四个整数 n、m、x和y,依次代表枫叶上的穴位数、脉络数,以及要添加的脉络是从穴位 x连向穴位y的。 接下来 m行,每行两个整数,由空格隔开,代表一条脉络。第 i 行的两个整数为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的。

Output

输出一行,为添加了从穴位 x连向穴位 y的脉络后,枫叶上以穴位 1 为根的脉络树的方案数对 1,000,000,007取模得到的结果。

Sample Input

4 4 4 3

1 2

1 3

2 4

3 2

Sample Output

3

HINT

对于所有测试数据,1 <= n <= 100000,n - 1 <= m <= min(200000, n(n -1) / 2),

1 <= x, y, ui, vi <= n。

Solution

直接处理外向树形图的数目比较困难,考虑容斥,用 每个点选一条入边的方案数 减去 每个点选一条入边形成不了外向树形图的方案数 得到答案。

每个点选一条入边的方案数直接求

对于无法形成外向树形图的情况显然是出现了一个环(除自环)而我们知道x和y显然就在环中,那么我们只需要从y到x跑一个拓扑排序+dp求出y到x的路径数所占总路径数的比例即可

Code

//By Menteur_Hxy
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=100010,MOD=1000000007;
bool vis[N];
LL ans,du[N],f[N],de[N];
vector <int> V[N];
queue <int> Q; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void dfs(int x) {
int siz=V[x].size();
F(i,0,siz-1) if(!vis[V[x][i]]) vis[V[x][i]]=1,dfs(V[x][i]);
} int main() {
int n=read(),m=read(),s=read(),t=read(),u,v;
ans=du[1]=1; du[t]++;
F(i,1,m) u=read(),v=read(),V[u].push_back(v),du[v]++;
F(i,1,n) ans=ans*du[i]%MOD,du[i]=qpow(du[i],MOD-2);
vis[t]=1; dfs(t);
F(i,1,n) {
int siz=V[i].size();
F(j,0,siz-1) if(vis[i]&&vis[v=V[i][j]]) de[v]++;
}
f[t]=du[t]; Q.push(t);
while(!Q.empty()) {
u=Q.front(); Q.pop();
int siz=V[u].size();
F(i,0,siz-1) if(vis[v=V[u][i]]) {
f[v]=(f[v]+f[u]*du[v])%MOD;
de[v]--;
if(!de[v]) Q.push(v);
}
}
printf("%lld",ans*(1-f[s]+MOD)%MOD);
return 0;
}

[luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)的更多相关文章

  1. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  2. [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理

    分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...

  3. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  4. BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  5. 【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)

    原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j ...

  6. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  7. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  8. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

  9. 4011: [HNOI2015]落忆枫音

    4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...

随机推荐

  1. 2.2-VLAN间路由

    2.2-VLAN间路由     第一代LAN间的通信:     不支持VLAN的交换机:由一个路由器和几个交换机组成,每个交换机的所有端口都同属于一个网段/LAN:在路由器上有几个网段就有几个与之相对 ...

  2. Android开发之WebView的开发使用(源码分享)

    假设我们想提供一个web应用程序(或仅仅是一个网页)作为client应用程序的一部分,我们能够使用WebView.WebView类是Android的视图类的扩展,它同意您显示web页面的一部分活动布局 ...

  3. 解决国内android sdk无法更新,google不能的简单办法

    在国内屏蔽了很多外国站点.连google 和android都屏蔽了,做程序猿的就苦了! 只是车到山前必有路,我们也有我们的办法! 推荐一个比以下的更好的方法:红杏公益代理:http://blog.cs ...

  4. 人见人爱A+B(杭电2033)

    /*人见人爱A+B Problem Description HDOJ上面已经有10来道A+B的题目了,相信这些题目以前是大家的最爱,希望今天的这个A+B能给大家带来好运.也希望这个题目能唤起大家对AC ...

  5. Ambarella SDK build 步骤解析

    Make Target Options make命令如下: make <Tab> <Tab> /*列出所有支持的目标(命令行输入make, 再按两下Tab键)*/ make & ...

  6. 【BZOJ 1370】 团伙

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1370 [算法] 并查集 + 拆点 [代码] #include<bits/std ...

  7. python-day01 pip 在线安装,标识符规则,注释,变量名,类型

    1.python第三方库安装: 在线安装:pip install 库名 pip install 库名 -i 国内源网站地址 离线安装:xxx.tar.gz/rar/zip 解压安装 2.标识符规则: ...

  8. Mvc程序字体加载失败问题

    在我们开发的asp.net-mvc项目中,有时会出现字体加载失败的现象,但是一检查字体文件目录,发现文件目录都是存在的且有效的,这是为何呢?原来需要再web.config文件中添价少许配置代码就搞定. ...

  9. vs2008 启动IE浏览器 出现DW20.exe占用大量cpu 服务器iis 异常调试

    DW20.exe占用大量cpu 服务器iis运行出现异常想查一下故障原因,发现有好几个DW20.exe进程,每个占用20%左右的cpu,在任务管理器中将其终止后,它又自动运行起来了 查了一下DW20. ...

  10. create-react-app 引入ant design 及 使用 less

    全局引入: 第一步:全局安装 create-react-app npm install create-react-app -g 第二步:安装 yarn npm install -g yarn 第三步: ...