摘自:https://www.zhihu.com/question/21094489/answer/86273196

什么是SVM?

当然首先看一下wiki.

Support Vector Machines are learning models used for classification: which individuals in a population belong where? So… how do SVM and the mysterious “kernel” work?

好吧,故事是这样子的:

在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”
<img src="https://pic2.zhimg.com/5aff2bcdbe23a8c764a32b1b5fb13b71_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

于是大侠这样放,干的不错?
<img src="https://pic2.zhimg.com/3dbf3ba8f940dfcdaf877de2d590ddd1_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

<img src="https://pic4.zhimg.com/0b2d0b26ec99ee40fd14760350e957af_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。
<img src="https://pic2.zhimg.com/4b9e8a8a87c7982c548505574c13dc05_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

<img src="https://pic4.zhimg.com/7befaafc45763b9c4469abf245dc98cb_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后,在SVM 工具箱中有另一个更加重要的 trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。

<img src="https://pic4.zhimg.com/558161d10d1f0ffd2d7f9a46767de587_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。<img src="https://pic4.zhimg.com/55d7ad2a6e23579b17aec0c3c9135eb3_b.png" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。
<img src="https://pic3.zhimg.com/e5d5185561a4d5369f36a9737fc849c6_b.png" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

再之后,无聊的大人们,把这些球叫做 「data」,把棍子 叫做 「classifier」, 最大间隙trick 叫做「optimization」, 拍桌子叫做「kernelling」, 那张纸叫做「hyperplane」。

图片来源:Support Vector Machines explained well

SVM最通俗的解读的更多相关文章

  1. 支持向量机通俗导论(理解SVM的三层境界)(ZT)

    支持向量机通俗导论(理解SVM的三层境界) 原文:http://blog.csdn.net/v_JULY_v/article/details/7624837 作者:July .致谢:pluskid.白 ...

  2. 支持向量机通俗导论(理解SVM的三层境界)【非原创】

    支持向量机通俗导论(理解SVM的三层境界) 作者:July :致谢:pluskid.白石.JerryLead. 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vecto ...

  3. 支持向量机通俗导论(SVM学习)

    1.了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是 ...

  4. 支持向量机通俗导论(理解SVM的三层境界)[转]

    作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于201 ...

  5. 支持向量机(SVM)入门

    一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器, ...

  6. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  7. 关于SVM一篇比较全介绍的博文

    转自:http://blog.csdn.net/v_july_v/article/details/7624837 支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support ...

  8. EasyPR源码剖析(7):车牌判断之SVM

    前面的文章中我们主要介绍了车牌定位的相关技术,但是定位出来的相关区域可能并非是真实的车牌区域,EasyPR通过SVM支持向量机,一种机器学习算法来判定截取的图块是否是真的“车牌”,本节主要对相关的技术 ...

  9. SVM较全面介绍,干货!(转载)

    很不错的一篇介绍SVM的文章,证明通俗易懂! 转自:https://blog.csdn.net/v_july_v/article/details/7624837 前言 动笔写这个支持向量机(suppo ...

随机推荐

  1. 解决sql server死锁

    -- 查询死锁 select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) tableName from sys ...

  2. html5——颜色

    CSS2 1.opacity,可以设置透明度,但是父盒子设置了透明度会影响子盒子 CC3 1.transparent属性,但是不可改变透明值 2.rgba():r--red g--green b--b ...

  3. JS——input标签注册事件

    注意:淘宝的lable是用定位制作的,事件是oninput事件 <!DOCTYPE html> <html> <head lang="en"> ...

  4. java设计模式03装饰者者模式

    动态地给一个对象添加一些额外的职责.就增加功能来说, Decorator模式相比生成子类更为灵活.该模式以对客 户端透明的方式扩展对象的功能. (1)在不影响其他对象的情况下,以动态.透明的方式给单个 ...

  5. vue自定义轻量级form表单校验

    遇到了form表单提交的需求,找了vue的组件觉得不够灵活,有时间自己写了一个. 调用方法 全局引入注册: import va from 'global/js/va' va.install(Vue); ...

  6. 破解js中的this指向

    首先必须要说的是,this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象(这句话有些问题,后面会解释为什么会有问题,虽然 ...

  7. 谈一谈Dijkstra

    dijkstra呢是最短路三大算法之一.很多人都觉得不如spfa,但是这两者在跑稠密图时,dijkstra有奇效 在讲之前先说一说食用方法: 适用于有向的无负权值的图. 样例飘过 6 9 1 //n个 ...

  8. 5.2.2 re模块方法与正则表达式对象

    Python标准库re提供了正则表达式操作所需要的功能,既可以直接使用re模块中的方法,来实现,也可以把模式编译成正则表达式对象再使用. 方法 功能说明 complie(pattern[,flagss ...

  9. Huawei-R&S-网络工程师实验笔记20190530-FTP上传下载、STelnet登录、SFTP登录

    >Huawei-R&S-网络工程师实验笔记20190530-FTP上传下载.STelnet登录.SFTP登录 >>实验开始,参考<Huawei-R&S-网络工程 ...

  10. Scrapy——6 APP抓包—scrapy框架下载图片

    Scrapy——6 怎样进行APP抓包 scrapy框架抓取APP豆果美食数据 怎样用scrapy框架下载图片 怎样用scrapy框架去下载斗鱼APP的图片? Scrapy创建下载图片常见那些问题 怎 ...