作者:大闲人柴毛毛
链接:https://www.zhihu.com/question/24853633/answer/254224088
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

TCP三次握手

<img src="https://pic3.zhimg.com/50/v2-576b043d12353928eea6e45373655668_hd.jpg" data-caption="" data-rawwidth="763" data-rawheight="454" class="origin_image zh-lightbox-thumb" width="763" data-original="https://pic3.zhimg.com/v2-576b043d12353928eea6e45373655668_r.jpg">

PS:TCP协议中,主动发起请求的一端称为『客户端』,被动连接的一端称为『服务端』。不管是客户端还是服务端,TCP连接建立完后都能发送和接收数据。

起初,服务器和客户端都为CLOSED状态。在通信开始前,双方都得创建各自的传输控制块(TCB)。
服务器创建完TCB后遍进入LISTEN状态,此时准备接收客户端发来的连接请求。

第一次握手
客户端向服务端发送连接请求报文段。该报文段的头部中SYN=1,ACK=0,seq=x。请求发送后,客户端便进入SYN-SENT状态。

  • PS1:SYN=1,ACK=0表示该报文段为连接请求报文。
  • PS2:x为本次TCP通信的字节流的初始序号。
    TCP规定:SYN=1的报文段不能有数据部分,但要消耗掉一个序号。

第二次握手
服务端收到连接请求报文段后,如果同意连接,则会发送一个应答:SYN=1,ACK=1,seq=y,ack=x+1。
该应答发送完成后便进入SYN-RCVD状态。

  • PS1:SYN=1,ACK=1表示该报文段为连接同意的应答报文。
  • PS2:seq=y表示服务端作为发送者时,发送字节流的初始序号。
  • PS3:ack=x+1表示服务端希望下一个数据报发送序号从x+1开始的字节。

第三次握手
当客户端收到连接同意的应答后,还要向服务端发送一个确认报文段,表示:服务端发来的连接同意应答已经成功收到。
该报文段的头部为:ACK=1,seq=x+1,ack=y+1。
客户端发完这个报文段后便进入ESTABLISHED状态,服务端收到这个应答后也进入ESTABLISHED状态,此时连接的建立完成!

为什么连接建立需要三次握手,而不是两次握手?
防止失效的连接请求报文段被服务端接收,从而产生错误。

PS:失效的连接请求:若客户端向服务端发送的连接请求丢失,客户端等待应答超时后就会再次发送连接请求,此时,上一个连接请求就是『失效的』。

若建立连接只需两次握手,客户端并没有太大的变化,仍然需要获得服务端的应答后才进入ESTABLISHED状态,而服务端在收到连接请求后就进入ESTABLISHED状态。此时如果网络拥塞,客户端发送的连接请求迟迟到不了服务端,客户端便超时重发请求,如果服务端正确接收并确认应答,双方便开始通信,通信结束后释放连接。此时,如果那个失效的连接请求抵达了服务端,由于只有两次握手,服务端收到请求就会进入ESTABLISHED状态,等待发送数据或主动发送数据。但此时的客户端早已进入CLOSED状态,服务端将会一直等待下去,这样浪费服务端连接资源。

TCP四次挥手

<img src="https://pic2.zhimg.com/50/v2-c8b61ed2a249700583b11bc5d16c5711_hd.jpg" data-caption="" data-rawwidth="772" data-rawheight="524" class="origin_image zh-lightbox-thumb" width="772" data-original="https://pic2.zhimg.com/v2-c8b61ed2a249700583b11bc5d16c5711_r.jpg">

TCP连接的释放一共需要四步,因此称为『四次挥手』。
我们知道,TCP连接是双向的,因此在四次挥手中,前两次挥手用于断开一个方向的连接,后两次挥手用于断开另一方向的连接。

第一次挥手
若A认为数据发送完成,则它需要向B发送连接释放请求。该请求只有报文头,头中携带的主要参数为:
FIN=1,seq=u。此时,A将进入FIN-WAIT-1状态。

  • PS1:FIN=1表示该报文段是一个连接释放请求。
  • PS2:seq=u,u-1是A向B发送的最后一个字节的序号。

第二次挥手
B收到连接释放请求后,会通知相应的应用程序,告诉它A向B这个方向的连接已经释放。此时B进入CLOSE-WAIT状态,并向A发送连接释放的应答,其报文头包含:
ACK=1,seq=v,ack=u+1。

  • PS1:ACK=1:除TCP连接请求报文段以外,TCP通信过程中所有数据报的ACK都为1,表示应答。
  • PS2:seq=v,v-1是B向A发送的最后一个字节的序号。
  • PS3:ack=u+1表示希望收到从第u+1个字节开始的报文段,并且已经成功接收了前u个字节。

A收到该应答,进入FIN-WAIT-2状态,等待B发送连接释放请求。

第二次挥手完成后,A到B方向的连接已经释放,B不会再接收数据,A也不会再发送数据。但B到A方向的连接仍然存在,B可以继续向A发送数据。

第三次挥手
当B向A发完所有数据后,向A发送连接释放请求,请求头:FIN=1,ACK=1,seq=w,ack=u+1。B便进入LAST-ACK状态。

第四次挥手
A收到释放请求后,向B发送确认应答,此时A进入TIME-WAIT状态。该状态会持续2MSL时间,若该时间段内没有B的重发请求的话,就进入CLOSED状态,撤销TCB。当B收到确认应答后,也便进入CLOSED状态,撤销TCB。

为什么A要先进入TIME-WAIT状态,等待2MSL时间后才进入CLOSED状态?
为了保证B能收到A的确认应答。
若A发完确认应答后直接进入CLOSED状态,那么如果该应答丢失,B等待超时后就会重新发送连接释放请求,但此时A已经关闭了,不会作出任何响应,因此B永远无法正常关闭

 
 
之所以存在 3-way hanshake 的说法,是因为 TCP 是双向通讯协议,作为响应一方(Responder) 要想初始化发送通道,必须也进行一轮 SYN + ACK。由于 SYN ACK 在 TCP 分组头部是两个标识位,因此处于优化目的被合并了。所以达到双方都能进行收发的状态只需要 3 个分组

在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。在另一部经典的《计算机网络》一书中讲“三次握手”的目的是为了解决“网络中存在延迟的重复分组”的问题。这两种不用的表述其实阐明的是同一个问题。
谢希仁版《计算机网络》中的例子是这样的,“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。

tcp为什么要三次握手的更多相关文章

  1. TCP/IP协议三次握手与四次握手流程解析

    原文链接地址:http://www.2cto.com/net/201310/251896.html TCP/IP协议三次握手与四次握手流程解析 TCP/IP协议的详细信息参看<TCP/IP协议详 ...

  2. 理解TCP为什么需要进行三次握手(白话)

    原文地址:http://www.cnblogs.com/yuilin/archive/2012/11/05/2755298.html 首先简单介绍一下TCP三次握手 在TCP/IP协议中,TCP协议提 ...

  3. TCP/IP协议三次握手与四次握手流程解析(转载及总结)

    原文地址:http://www.2cto.com/net/201310/251896.html,转载请注明出处: TCP/IP协议三次握手与四次握手流程解析 一.TCP报文格式  TCP/IP协议的详 ...

  4. TCP连接建立的三次握手过程可以携带数据吗?

    前几天实验室的群里扔出了这样一个问题:TCP连接建立的三次握手过程可以携带数据吗?突然发现自己还真不清楚这个问题,平日里用tcpdump或者Wireshark抓包时,从来没留意过第三次握手的ACK包有 ...

  5. TCP/IP的三次握手协议

    关于TCP/IP的三次握手协议,这篇文章中有详细的介绍,很通俗易懂,什么时候忘了,都可以过来瞧两眼,保证很快就明白了. 首先TCP/IP协议分为三个阶段:建立连接(握手阶段),数据传输阶段,连接终止阶 ...

  6. 理解TCP为什么需要进行三次握手

        在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: ...

  7. 为什么建立TCP连接需要三次握手,为什么断开TCP连接需要四次握手,TIME_WAIT状态的意义

    为什么建立TCP连接需要三次握手? 原因:为了应对网络中存在的延迟的重复数组的问题 例子: 假设client发起连接的连接请求报文段在网络中没有丢失,而是在某个网络节点长时间滞留了,导致延迟到达ser ...

  8. TCP协议中三次握手

    TCP/IP是互联网相关的各类协议族的总称 TCP/IP协议族分为:应用层,传输层,网络层,数据链路层 应用层:向用户提供应用服务时的通讯的活动 传输层:提供处于网络连接中的两台计算机之间的数据传输 ...

  9. python摸爬滚打之----tcp协议的三次握手四次挥手

    TCP协议的三次握手, 四次挥手 三次握手过程 1, 服务器时刻准备接受客户端进程的连接请求, 此时服务器就进入了LISTEN(监听)状态; 2, 客户端进程然后向服务器发出连接请求报文, 之后客户端 ...

  10. TCP建立连接三次握手和释放连接四次握手

    TCP建立连接三次握手和释放连接四次握手     [转载]http://blog.csdn.net/guyuealian/article/details/52535294   在谈及TCP建立连接和释 ...

随机推荐

  1. HTTP状态码:300\400\500 错误代码

    一些常见的状态码为: 200 - 服务器成功返回网页 404 - 请求的网页不存在 503 - 服务不可用 详细分解: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 ...

  2. javascript--记忆函数

    function memory(val) { if(!memory.cached) {//判断是否创建了缓存 memory.cached = {}; } if(memory.cached[val] ! ...

  3. AtCoderBeginner091-C 2D Plane 2N Points 模拟问题

    题目链接:https://abc091.contest.atcoder.jp/tasks/arc092_a 题意 On a two-dimensional plane, there are N red ...

  4. NOIP2016 天天爱跑步(树上差分)

    题意 给定一棵树,从时刻 0 开始,有若干人从 S[i] 出发向 T[i] 移动,每单位时刻移动一条边 对于树上每个点 x,求 w[x]  时刻有多少人恰好路过 x N,M≤300000 题解 从上午 ...

  5. vue-router 实现无效路由(404)的友好提示

    最近在做一个基于vue-router的SPA,想对无效路由(404)页面做下统一处理.这次我真的没有在官方文档找到具体的说明[捂脸]所以本文仅是我DIY的一个思路,求轻虐=_= 在我的理解中,vue- ...

  6. 20180929 北京大学 人工智能实践:Tensorflow笔记08

    https://www.bilibili.com/video/av22530538/?p=28 ———————————————————————————————————————————————————— ...

  7. Python学习笔记(5)--数据结构之字典dict

    字典(dict) 定义:键值对集合 初始化:{}, {'1' : 'abc', '2' : 'def'} 1.增加:单个数据直接赋值  update(dict2) ---把dict2的元素加入到dic ...

  8. Select For update语句浅析

    Select -forupdate语句是我们经常使用手工加锁语句.通常情况下,select语句是不会对数据加锁,妨碍影响其他的DML和DDL操作.同时,在多版本一致读机制的支持下,select语句也不 ...

  9. [Recompose] Refactor React Render Props to Streaming Props with RxJS and Recompose

    This lesson takes the concept of render props and migrates it over to streaming props by keeping the ...

  10. 6个技巧加速你的gradle编译

    近期我们都在讨论build系统,我们看了一些技巧能够让你的Maven build更快. 结论和反映都势不可挡.由于我们提供的技巧,很多其它的人都非常高兴能加快他们完毕自己的项目.如今,让我们看一下怎么 ...