POJ3177 Redundant Paths 图的边双连通分量
题目大意:问一个图至少加多少边能使该图的边双连通分量成为它本身。
图的边双连通分量为极大的不存在割边的子图。图的边双连通分量之间由割边连接。求法如下:
- 求出图的割边
- 在每个边双连通分量内Dfs,标记每个节点所属于的双连通分量编号
- 构建一新图Tree,一个节点代表一个双连通分量。原图中遍历割边,将割边连接的两个双连通分量在Tree中的对应节点连接。
- Tree中算出每个节点的度数,如果一节点度数为1,则其为叶子节点。输出(叶子节点数+1/2)。(连接了叶子节点,就形成了环,Tree中不连接叶子节点的边因为在环内,所以不再是割边了。)
注意:如果一个边是割边,则其反向边也是割边。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cassert>
using namespace std; #define LOOP(i, n) for(int i=1; i<=n; i++)
const int MAX_NODE = 5010, MAX_EDGE = 10010 * 2; struct G {
struct Node;
struct Edge; struct Node {
int Id, DfsN, Low, InBlock, Degree;
Edge *Head;
}_nodes[MAX_NODE], *Root; struct Edge {
bool IsCut;
Node *From, *To;
Edge *Next, *Rev;
Edge(){}
Edge(Node *from, Node *to, Edge *next):From(from),To(to),Next(next),IsCut(false){}
}*_edges[MAX_EDGE]; int _vCount, _eCount, DfsCnt, BlockCnt, LeafCnt; void Init() {
memset(_nodes, 0, sizeof(_nodes));
_vCount = _eCount = DfsCnt = LeafCnt = 0;
BlockCnt = 0;
} Edge *NewEdge() {
_eCount++;
return _edges[_eCount] ? _edges[_eCount] : _edges[_eCount] = new Edge();
} Edge *AddEdge(Node *from, Node *to) {
Edge *e = NewEdge();
*e = Edge(from, to, from->Head);
from->Head = e;
return e;
} void Build(int uId, int vId, bool is2d) {
while (_vCount < uId || _vCount < vId)
_vCount++;
Node *u = uId + _nodes, *v = vId + _nodes;
u->Id = uId;
v->Id = vId;
Edge *e1 = AddEdge(u, v);
if (is2d) {
Edge *e2 = AddEdge(v, u);
e1->Rev = e2;
e2->Rev = e1;
}
} void FindCutEdge(Node *u, Edge *Prev) {//易忘点:prev
if (u->DfsN)
return;
u->DfsN = u->Low = ++DfsCnt;
for (Edge *e = u->Head; e; e = e->Next) {
if (!e->To->DfsN) {
FindCutEdge(e->To, e);
u->Low = min(u->Low, e->To->Low);
if (u->DfsN < e->To->Low)
e->IsCut = e->Rev->IsCut = true;//易忘点:e->Rev->IsCut
}
else if (e->Rev != Prev)
u->Low = min(u->Low, e->To->DfsN);
}
} void FindCutEdge() {
LOOP(i, _vCount) {//易忘点:图不一定连通,所以要循环。
Root = i + _nodes;
FindCutEdge(Root, NULL);
}
} void SetBlock(Node *u) {
u->InBlock = BlockCnt;
for (Edge *e = u->Head; e; e = e->Next)
if (!e->IsCut && !e->To->InBlock)
SetBlock(e->To);
} void SetBlock() {
LOOP(i, _vCount) {
if (!_nodes[i].InBlock) {
BlockCnt++;
SetBlock(i + _nodes);
}
}
}
void SetLeafCnt() {//此处比较有技巧,注意看看
LOOP(i, _eCount)
_edges[i]->To->Degree++;
LOOP(i, _vCount)
if (_nodes[i].Degree <= 1)
LeafCnt++;
}
}Org, Tree; int main() {
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
//freopen("c:\\noi\\source\\output.txt", "w", stdout);
#endif
Org.Init();
Tree.Init();
int totNode, totEdge, uId, vId;
scanf("%d%d", &totNode, &totEdge);
LOOP(i, totEdge) {
scanf("%d%d", &uId, &vId);
Org.Build(uId, vId, true);
}
Org.FindCutEdge();
Org.SetBlock();
LOOP(i, Org._eCount)
if (Org._edges[i]->IsCut)
Tree.Build(Org._edges[i]->From->InBlock, Org._edges[i]->To->InBlock, false);
Tree.SetLeafCnt();
printf("%d\n", (Tree.LeafCnt + 1) / 2);
return 0;
}
POJ3177 Redundant Paths 图的边双连通分量的更多相关文章
- POJ 3177 Redundant Paths (tarjan边双连通分量)
题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...
- POJ 3177 Redundant Paths (桥,边双连通分量,有重边)
题意:给一个无向图,问需要补多少条边才可以让整个图变成[边双连通图],即任意两个点对之间的一条路径全垮掉,这两个点对仍可以通过其他路径而互通. 思路:POJ 3352的升级版,听说这个图会给重边.先看 ...
- BZOJ1718:[USACO]Redundant Paths 分离的路径(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- POJ3177 Redundant Paths【tarjan边双联通分量】
LINK 题目大意 给你一个有重边的无向图图,问你最少连接多少条边可以使得整个图双联通 思路 就是个边双的模板 注意判重边的时候只对父亲节点需要考虑 你就dfs的时候记录一下出现了多少条连向父亲的边就 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- POJ3177 Redundant Paths —— 边双联通分量 + 缩点
题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- 2015 多校赛 第二场 1006 (hdu 5305)
Problem Description There are n people and m pairs of friends. For every pair of friends, they can c ...
- B - Eleven
Problem description Eleven wants to choose a new name for herself. As a bunch of geeks, her friends ...
- 管理mysql数据严格模式,和安全模式处理
最近使用mysql数据库高一点的版本遇到了,插入和修改等语句失败情况.语句没有错误,但是workbench提示 Field 'id' doesn't have a default value.原因是 ...
- ie8及其以下版本兼容性问题之文本省略
1. 单行文本省略 单行文本省略适用于文本超出内容显示区,则在末尾显示省略号 1.1 普通文本超出省略 普通文本超出显示省略号,示例: .p{ height: 30px line-height: 30 ...
- 从XMLHttpRequest中获取请求的URL
在编写Ajax通用错误处理程序时,经常需要记录发生错误的XMLHttpRequest的请求URL.但查询文档,并未找到从XMLHttpRequest中获取请求URL的方法. 在javascript - ...
- Deutsch lernen (11)
1. anwesend a. 出席的,在场的 ~ abwesend Es waren gegen 50 Leute anwesend. 2. gespannt a. (心情)急切的,急于想知道的:紧张 ...
- QS之force(1)
force This command allows you to apply stimulus interactively to VHDL signals(not variables), Verilo ...
- CXF-JAX-RS开发(二)spring整合CXF-JAX-RS
一.创建maven工程[Packaging:war] 1.目录结构 2.坐标书写 二.导入依赖和tomcat服务器插件 <dependencies> <!-- CXF --> ...
- 【sqli-labs】 less3 GET - Error based - Single quotes with twist string (基于错误的GET单引号变形字符型注入)
实质上和less1没有多大区别,看懂了一样走流程 提交参数 加单引号 http://localhost/sqli/Less-3/?id=1' 观察报错,看near 和 at 的引号之间内容 '1'') ...
- Python中join函数和os.path.join用法
Python中有join和os.path.join()两个函数,具体作用如下: join:连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串 os.path.jo ...