1. Γ(a+b)Γ(a)Γ(b):归一化系数

Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1

面对这样一个复杂的概率密度函数,我们不禁要问,Γ(a+b)Γ(a)Γ(b) 是怎么来的,还有既然是一种分布,是否符合归一化的要求,即:

∫10Beta(μ|a,b)dμ=1

通过后续的求解我们将发现,这两者其实是同一个问题,即正是为了使得 Beta 分布符合归一化的要求,才在前面加了 Γ(a+b)Γ(a)Γ(b),这样复杂的归一化系数。

为了证明:

∫10Beta(μ|a,b)=1⇒∫10Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμ⇓∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)

进一步,根据 Γ(x)=∫∞0e−ttx−1dt 的定义,我们首先来计算(令 t=x+y):

Γ(a)Γ(b)======∫∞0e−xxa−1dx∫∞0e−yyb−1dy∫∞0xa−1{∫∞xe−t(t−x)b−1dt}dx(交换t与x的积分顺序,注意画图)∫∞0e−t{∫t0xa−1(t−x)b−1dx}dt(变换替换x=tμ)∫∞0e−t{∫10(tμ)a−1(t−tμ)b−1tdμ}dt∫∞0e−tta+b−1dt∫10μa−1(1−μ)b−1dμΓ(a+b)∫10μa−1(1−μ)b−1dμ

因此:

∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)

2. 期望与方差的计算

首先来看期望:

E(μ)====∫10μΓ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)∫10μa+1−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)Γ(a+1)Γ(b)Γ(a+1+b)aa+b

计算方差之前,首先计算二阶矩:

E(μ2)=Γ(a+b)Γ(a)Γ(b)Γ(a+2)Γ(b)Γ(a+2+b)=a(a+1)(a+b)(a+b+1)

因此方差:

var[μ]=E(μ2)−E2(μ)=ab(a+b)2(a+b+1)

Beta 分布归一化的证明(系数是怎么来的),期望和方差的计算的更多相关文章

  1. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  2. 二项分布 多项分布 伽马函数 Beta分布

    http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: ...

  3. 如何通俗理解贝叶斯推断与beta分布?

    有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...

  4. 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

    1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...

  5. Beta分布从入门到精通

    近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Defini ...

  6. 指数家族-Beta分布

    2. Beta分布 2.1 Beta分布 我们将由几个问题来得引出几个分布: 问题一:1:  2:把这个  个随机变量排序后得到顺序统计量  3:问  是什么分布 首先我们尝试计算  落在一个区间   ...

  7. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  8. 二项分布和Beta分布

    原文为: 二项分布和Beta分布 二项分布和Beta分布 In [15]: %pylab inline import pylab as pl import numpy as np from scipy ...

  9. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

随机推荐

  1. spring data jpa 、hibernate、jpa之间的关系

    引用:http://blog.csdn.net/u014421556/article/details/52635000 hibernate作为JPA的实现.   JPA规范与ORM框架之间的关系   ...

  2. SSDB 一个高性能的支持丰富数据结构的 NoSQL 数据库, 用于替代 Redis.

    SSDB 一个高性能的支持丰富数据结构的 NoSQL 数据库, 用于替代 Redis. 特性 替代 Redis 数据库, Redis 的 100 倍容量 LevelDB 网络支持, 使用 C/C++ ...

  3. 11.03 在外链接中用OR逻辑

    select e.ename,d.deptno,d.dname,d.locfrom dept d left join emp e on(d.deptno = e.deptnoand (e.deptno ...

  4. vs2008 打开项目 无法读取项目文件

    卸载vs2015之后 出现问题 C:\Windows\SysWOW64\regedit.exe 64系统运行这个 删除 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MS ...

  5. HTML DIV中文字自动换行 , 顶部对齐

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta ht ...

  6. 深入了解Spring Boot 核心注解原理

    SpringBoot目前是如火如荼,所以今天就跟大家来探讨下SpringBoot的核心注解@SpringBootApplication以及run方法,理解下springBoot为什么不需要XML,达到 ...

  7. day008 字符编码之 字符编码 、Python2和Python3字符编码的区别

    计算机基础(掌握) 启动应用程序的流程 双击qq 操作系统接受指令然后把该操作转化为0和1发送给CPU CPU接受指令然后把指令发送给内存 内存接受指令把指令发送给硬盘获取数据 qq在内存中运行 文本 ...

  8. PAT_A1115#Counting Nodes in a BST

    Source: PAT A1115 Counting Nodes in a BST (30 分) Description: A Binary Search Tree (BST) is recursiv ...

  9. 【剑指Offer】1、二维数组中的查找

      题目描述:   在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否 ...

  10. Lua操作系统库、流、文件库

    Lua操作系统库.流.文件库 1.Lua中所有的操作系统库函数 (1)os.clock() --功能:返回执行该程序cpu花费的时钟秒数 (2)os.time(...) --按参数的内容返回一个时间值 ...