[Codeforces 757E] Bash Plays with Functions (数论)
题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90
题目:
题解:
$f_0(n) = 2^{n的不同质因子的个数}$
$ f_r(n) = \sum_{d|n}f_{r-1}(d)$
$f_0$是积性函数 , $f_r = f_0 * Id^r (1) $也是积性函数 , 所以只需要求$f_r(p^k)$就行了
$f_r(p^k)$与p无关 , $f_0(p^k)$=1+(k!=0) , $f_r(p^k)$=$\sum_{0<=i<=k}$ $ f_{r-1}(p^i)$
先递推出所有 (r,k) 的函数值, 每个询问只要分解质因数即可
时间复杂度: O((r + q) logn)
代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll; const int N=1e6+;
const int M=;
const int mod=1e9+;
int q,r,n,tot;
int prime[N],vis[N];
ll f[N][];
inline int read()
{
char ch=getchar();
int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void get_prime()
{
for (int i=;i<=N;i++)
{
if (!vis[i]) prime[++tot]=i;
for (int j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
}
void pre()
{
f[][]=;
for (int i=;i<=M;i++) f[][i]=;
for (int i=;i<=N;i++)
{
ll sum=;
for (int j=;j<=M;j++)
{
sum+=f[i-][j];
f[i][j]=(f[i][j]+sum)%mod;
}
}
}
int main()
{
get_prime();
pre();
q=read();
while (q--)
{
r=read();n=read();
ll ans=;
for (int i=;i<=tot&&prime[i]<=sqrt(n);i++)
{
if (n%prime[i]) continue;
int num=;
while (n%prime[i]==) n/=prime[i],num++;
ans=1ll*ans*f[r][num]%mod;
}
if (n>) ans=1ll*ans*f[r][]%mod;
printf("%I64d\n",ans);
}
return ;
}
[Codeforces 757E] Bash Plays with Functions (数论)的更多相关文章
- Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...
- CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...
- 【codeforces 757E】Bash Plays with Functions
[题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...
- Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...
- Codeforces 757 E Bash Plays with Functions
Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...
- codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)
http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...
- CF 757 E Bash Plays with Functions —— 积性函数与质因数分解
题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...
- CF757E Bash Plays with Functions
题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...
- Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...
随机推荐
- npm API文档
npm API文档 https://docs.npmjs.com/
- [Hyperapp] Render Text with JSX in Hyperapp
Hyperapp is an ultra lightweight (1kb), minimal, functional, JavaScript library for building UIs. It ...
- (手冊)Animation 之 使用Animation View
观看游戏物体上的动画(Viewing Animations on a GameObject) Animation View 是与 Hierarchy View.Scene View和Inspector ...
- lua简单类的实现
原文地址:http://blog.csdn.net/qqmcy/article/details/37725177 类实现: MyClass = class("MyClass") - ...
- 基于redis ae实现 Linux中的文件系统监控机制(inotify)
(英文部分为转的.代码是个人代码) 1 What's inotify The inotify API provides a mechanism for monitoring file system ...
- 弹性ScrollView,和下啦刷新的效果相似 实现下拉弹回和上拉弹回
今天做了一个弹性ScrollView,和下啦刷新的效果类似,我想这个非常多需求都用的这样的效果 事实上这是一个自己定义的scrollView,上代码.这是我写在一个公共的组件包里的 package c ...
- 数据结构—单链表(类C语言描写叙述)
单链表 1.链接存储方法 链接方式存储的线性表简称为链表(Linked List). 链表的详细存储表示为: ① 用一组随意的存储单元来存放线性表的结点(这组存储单元既能够是连续的.也能够是不连续的) ...
- bzoj2756: [SCOI2012]奇怪的游戏(网络流+分情况)
2756: [SCOI2012]奇怪的游戏 题目:传送门 题解: 发现做不出来的大难题一点一个网络流 %大佬 首先黑白染色(原来是套路...)染色之后就可以保证每次操作都一定会使黑白各一个各自的值加1 ...
- JQuery中的find、filter和each方法学习
find() 概述 搜索所有与指定表达式匹配的元素.这个函数是找出正在处理的元素的后代元素的好方法. 所有搜索都依靠jQuery表达式来完成.这个表达式可以使用CSS1-3的选择器语法来写. 参数 e ...
- Ubuntu系统下安装Eclipse
第一步:查看操作系统位数. 打开终端,输入file /sbin/init 可以看到笔者Ubuntu系统为32位,读者可以使用该命令获取自己机器上的操作系统位数. 这一步是最至关重要的一步,笔者机器处理 ...