题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90

题目:

题解:

$f_0(n) = 2^{n的不同质因子的个数}$

$ f_r(n) = \sum_{d|n}f_{r-1}(d)$

$f_0$是积性函数 , $f_r = f_0 * Id^r (1) $也是积性函数 , 所以只需要求$f_r(p^k)$就行了

$f_r(p^k)$与p无关 , $f_0(p^k)$=1+(k!=0) , $f_r(p^k)$=$\sum_{0<=i<=k}$ $ f_{r-1}(p^i)$

先递推出所有 (r,k) 的函数值, 每个询问只要分解质因数即可

时间复杂度: O((r + q) logn)

代码如下:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll; const int N=1e6+;
const int M=;
const int mod=1e9+;
int q,r,n,tot;
int prime[N],vis[N];
ll f[N][];
inline int read()
{
char ch=getchar();
int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void get_prime()
{
for (int i=;i<=N;i++)
{
if (!vis[i]) prime[++tot]=i;
for (int j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
}
void pre()
{
f[][]=;
for (int i=;i<=M;i++) f[][i]=;
for (int i=;i<=N;i++)
{
ll sum=;
for (int j=;j<=M;j++)
{
sum+=f[i-][j];
f[i][j]=(f[i][j]+sum)%mod;
}
}
}
int main()
{
get_prime();
pre();
q=read();
while (q--)
{
r=read();n=read();
ll ans=;
for (int i=;i<=tot&&prime[i]<=sqrt(n);i++)
{
if (n%prime[i]) continue;
int num=;
while (n%prime[i]==) n/=prime[i],num++;
ans=1ll*ans*f[r][num]%mod;
}
if (n>) ans=1ll*ans*f[r][]%mod;
printf("%I64d\n",ans);
}
return ;
}

[Codeforces 757E] Bash Plays with Functions (数论)的更多相关文章

  1. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  2. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  3. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  4. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

  5. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  6. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  7. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  8. CF757E Bash Plays with Functions

    题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...

  9. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

随机推荐

  1. 【Oracle学习笔记】

    内容主要包括: (1)三种循环及其简化 (2)游标的使用 (3)异常处理 (4)存储过程 (5)存储函数 (6)触发器 (7)其它pl/sql操作 ---------------loop循环定义变量- ...

  2. python微框架Bottle(http)

    环境: win7系统 Python2.7 一 背景和概述 眼下项目中须要加入一个激活码功能,打算单独弄一个httpserver来写. 由于之前的游戏中已经有了一套完整的激活码生成工具和验证httpse ...

  3. zzulioj--1634--Happy Thanksgiving Day - A + B Problem(模拟水题)

     1634: Happy Thanksgiving Day - A + B Problem Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 136  ...

  4. nyoj--236--心急的C小加(动态规划&&LIS)

    心急的C小加 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 C小加有一些木棒,它们的长度和质量都已经知道,需要一个机器处理这些木棒,机器开启的时候需要耗费一个单位的时间 ...

  5. BZOJ 4636 (动态开节点)线段树

    思路: 偷懒 懒得离散化 搞了个动态开节点的线段树 (其实是一样的--..) 注意会有a=b的情况 要判掉 //By SiriusRen #include <cstdio> #includ ...

  6. Linux安装(虚拟机)

    ** 虚拟机安装CentOS系统 以下步骤会连续给出截图,大家自行校对即可. 首先打开虚拟机,出现的界面如上一篇文章截图所示. ** 配置虚拟机 步骤: 1.点击“创建新的虚拟机”     2.选择“ ...

  7. <Three.js>(第三节)全景漫游

    一.实验内容 通过上次实验,了解了Three.js创建场景的基本步骤.这一节,我们将通过Three.js实现全景漫游功能.如下图: 全景图是获取一个3D场景中的不同角度的图片,然后通过拼接.融合实现3 ...

  8. python下载网页转化成pdf

    最近在学习一个网站补充一下cg基础.但是前几天网站突然访问不了了,同学推荐了waybackmachine这个网站,它定期的对网络上的页面进行缓存,但是好多图片刷不出来,很憋屈.于是网站恢复访问后决定把 ...

  9. CTSC2012 熟悉的文章 广义后缀自动机_单调队列

    没啥难的,主要是单调队列忘了咋求了QAQ... Code: #include <cstdio> #include <algorithm> #include <cstrin ...

  10. SP10628 COT - Count on a tree 主席树

    Code: #include<cstdio> #include<cstring> #include<algorithm> #include<string> ...